cho a>0,b>0 và \(a^2+b^2=\frac{5}{2}ab\)hãy tính:
\(\frac{a+b}{a-b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\frac{a^2+b^2+ab}{ab}.\frac{a^2-2ab+b^2}{a^2b^2}}{\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}}\)
\(=\frac{\frac{a^4-2a^3b+a^2b^2+a^2b^2-2ab^3+b^4+a^3b-2a^2b^2+ab^3}{a^3b^3}}{\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}}\)
\(=\frac{a^4+b^4-a^3b-ab^3}{a^3b^3}:\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}=\frac{1}{ab}\)
Ta có: \(\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}=\frac{a+b+b+c+c+a}{3+4+5}=\frac{2.\left(a+b+c\right)}{12}\)
\(=\frac{a+b+c}{6}\)
\(\Rightarrow\) Thay M vào tính
\(A=\frac{a^2}{b}+\frac{b^2}{a}+\frac{8}{a^2+b^2+6}=\frac{a^3+b^3}{ab}+\frac{8}{a^2+b^2+6}=a^3+b^3+\frac{8}{a^2+b^2+6}\)
\(A=\left(a+b\right)\left(a^2+b^2-ab\right)+\frac{8}{a^2+b^2+6}\ge2\sqrt{ab}\left(a^2+b^2-1\right)+\frac{8}{a^2+b^2+6}\)
\(A\ge2\left(a^2+b^2-1\right)+\frac{8}{a^2+b^2+6}=2a^2+2b^2-2+\frac{8}{a^2+b^2+6}\)
\(A\ge\frac{a^2+b^2+6}{8}+\frac{8}{a^2+b^2+6}+\frac{15}{8}\left(a^2+b^2\right)-\frac{11}{4}\)
\(A\ge2\sqrt{\frac{\left(a^2+b^2+6\right).8}{8\left(a^2+b^2+6\right)}}+\frac{15}{8}.2ab-\frac{11}{4}=3\)
Dấu "=" xảy ra khi \(a=b=1\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\)
ta có : \(\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\ge\frac{\left(1+1\right)^2}{\left(2ab+a^2+b^2\right)}=\frac{4}{\left(a+b\right)^2}=4\)
và \(1=a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\frac{1}{4}\Leftrightarrow\frac{1}{2ab}\ge2\)
=> A >/ 6 (dpcm)
a>b nx nha
https://www.olm.vn/hoi-dap/detail/7715665734.html
bạn kham khảo tại link này nhé.