1) Tinh :
a)\(a^7-a⋮7\)
b)A \(⋮\) Bvới \(A=1^3+2^3+3^3+...+100^3\)
\(B=1+2+3+...+100\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3
b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)
Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6
+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7
Vậy a^7-a chia hết cho 7
b, a^7-a=a(a^6-1)
=a(a^3+1)(a^3-1)
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1)
+7a (a-1) (a+1) (a^2+a-1)
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
+7a (a-1) (a+1) (a^2+a-1)
+7a (a-1) (a+1) (a^2-a-6)
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7)
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)]
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7.
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7
uk, bạn tì ssh, sau đó tìm tổng, dễ mà, tick đi, mình giải cho!
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
a,3/7 +1/2-[-3]/70
=13/14 -[-3]/70
=65/70 -[-3]/70
=34/35
b,3/5+-1/25 -35/100
=14/25 - 35/100
=56 /100 -35/100
= 21/100
c ,5/12 -3/-16+3/4
=29/48 +3/4
= 29/48 +36/48
=65/48
d, 5/15 +4/-12 +1/7 -1/-6
= 1/3 +1/-3 +1/7-1/-6
=0+1/7-1/-6
= 13/42
A.\(\dfrac{3}{7}+\dfrac{1}{2}+\dfrac{\left(-3\right)}{70}\)
=\([\dfrac{30}{70}+\dfrac{\left(-3\right)}{70}]\)+\(\dfrac{1}{2}\)
= \(\dfrac{27}{70}+\dfrac{35}{70}\)
=\(\dfrac{62}{70}=\dfrac{31}{35}\)
B.\(\dfrac{3}{5}+\dfrac{-1}{25}-\dfrac{35}{100}\)
=\(\dfrac{60}{100}+\dfrac{-4}{100}-\dfrac{35}{100}\)
=\(\dfrac{60+\left(-4\right)-35}{100}\)
=\(\dfrac{21}{100}\)
C.\(\dfrac{5}{12}-\dfrac{3}{-16}+\dfrac{3}{4}\)
=\(\left(\dfrac{5}{12}+\dfrac{9}{12}\right)-\dfrac{-3}{16}\)
=\(\dfrac{7}{6}-\dfrac{-3}{16}\)
=\(\dfrac{56}{48}-\dfrac{-9}{48}\)=\(\dfrac{65}{48}\)
D.\(\dfrac{5}{15}+\dfrac{4}{-12}+\dfrac{1}{7}-\dfrac{1}{-6}\)
=\(\dfrac{1}{3}+\dfrac{1}{7}+(\dfrac{-2}{6}-\dfrac{-1}{6})\)
=\(\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{-1}{6}\)
=\((\dfrac{1}{3}+\dfrac{-1}{6})+\dfrac{1}{7}\)
=\(\dfrac{1}{6}+\dfrac{1}{7}\)=\(\dfrac{13}{42}\)
1 - 2 - 3 + 4 + 5 - 6 - 7 + 8+ ... + 1993 - 1994
= ( 1 - 2 - 3 + 4 ) = ( 5 - 6 - 7 + 8 ) + ... + 1993 - 1994
= 0 + 0 + ... + 1993 - 1994
= 0 + ( -1 ) = -1
b) ta có 1^2+2^2+...+n^2 = n(n+1)(2n+1)/6
=>2^2+4^2+...+(2n)^2= 2^2(1^2+2^2+...+n^2)= 2n(n+1)(2n+1)/3
và 1^2+2^2+...+(2n+1)^2=(2n+1)(2n+2)(4n+3)/...
=>1^2+3^2+5^2+...+(2n+1)^2 = (2n+1)(2n+2)(4n+3)/6 - 2n(n+1)(2n+1)/3 = (2n+1)(n+1)(2n+3)/3
=>1^2-2^2+3^2-4^2+..... -(2n)^2+(2n+1)^2 = (2n+1)(n+1)(2n+3)/3 - 2n(n+1)(2n+1)/3 = (n+1)(2n+1)
do đó ta có khi n = 100 thì
1^2-2^2+3^2-4^2.....+99^2-100^2+101^2 = (100+1)*(2*100+1)=201*101
Mình cũng không chắc câu b cho lắm
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(7A-A=\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
\(6A=7^{2008}-1\)
\(A=\frac{7^{2008}-1}{6}\)
Tương tự, \(B=\frac{4^{101}-1}{3},C=\frac{3^{101}-1}{2}\).
\(D=7+7^3+7^5+7^7+...+7^{99}\)
\(7^2.D=7^3+7^5+7^7+7^9+...+7^{101}\)
\(\left(7^2-1\right)D=\left(7^3+7^5+7^7+7^9+...+7^{101}\right)-\left(7+7^3+7^5+7^7+...+7^{99}\right)\)
\(48D=7^{101}-7\)
\(D=\frac{7^{101}-7}{48}\)
Tương tự, \(E=\frac{2^{9011}-2}{3}\)
a/ A= 1-3+5-7+9-11+......+97-99
= -2+(-2)+(-2)+......+(-2)
= (-2).25=-50
b/B=-1-2-3-4-...-100
=-(1+2+3+4+...+100)
=-5050
c/C=1-2+3-4+5-6+......+99-100
= -1+(-1)+(-1)+.............+(-1)
=(-1).50=-50
d/D=1-2-3+4+5-6-7+8+9-....+94-95
= (1-2-3+4)+(5-6-7+8)+.......+(92-93-94+95)
= 0+0+0+...+0=0