cho tam giác ABC có AB=18cm,AC=30 cm.Phân giác AD .Trên AD lấy E sao cho DE=1/3AE.Gọi F là giao điểm của BE và AC.Tính AF,FC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra DB=DE
Ta có: AB+BF=AF
AE+EC=AC
mà AF=AC
và AB=AE
nên BF=EC
b: Xét ΔBDF và ΔEDC có
BF=EC
\(\widehat{DBF}=\widehat{DEC}\)
BD=DE
Do đó: ΔBDF=ΔEDC
Suy ra: \(\widehat{BDF}=\widehat{EDC}\)
=>\(\widehat{BDF}+\widehat{BDE}=180^0\)
=>E,D,F thẳng hàng
c: Xét ΔAFC có
AB/AF=AE/AC
nên BE//FC
Ta có: ΔACF cân tại A
mà AD là đường phân giác
nên AD là đường cao
Chắc đề đây này:
Bài 4. Cho tam giác ABC có AB < AC và phân giác AD (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB. Trên tia AB lấy điểm F sao cho AC = AF. Chứng minh:
a) DB = DE ; BF = CE
b) Ba điểm F , D , E thẳng hàng
c) BE // FC ; AD \(\perp\) FC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc CB
c: BA=BE
DA=DE
=>BD là trung trực của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đo: ΔBAD=ΔBED
=>DA=DE
b,c: Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
=>BD vuông góc với FC
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
Do đó: ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>D,E,F thẳng hàng