K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

\(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+...+\left(-\frac{1}{7}\right)^{2017}\)

\(-\frac{1}{7}S=\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2018}\)

\(S-\left(-\frac{1}{7}S\right)=\left[\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+...+\left(-\frac{1}{7}\right)^{2017}\right]-\left[\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2018}\right]\)

\(S+\frac{1}{7}S=\left(-\frac{1}{7}\right)^0-\left(-\frac{1}{7}\right)^{2018}\)

\(\frac{8}{7}S=1+\left(\frac{1}{7}\right)^{2018}\)

\(S=\frac{1+\frac{1}{7^{2018}}}{\frac{8}{7}}=\frac{\left(1+\frac{1}{7^{2018}}\right).7}{8}\)

17 tháng 1 2020

S=1-3+5-7+...-2015+2017

  = (1-3)+(5-7)+......+(2013-2015)+2017

Số số hạng có từ 1 dến 2015 là: (2015-1):2+1=1008(số)

Vậy: Có 504 cặp số

Tổng= (-2).504+2017=1009

17 tháng 1 2020

S = 1 - 3 + 5 - 7 + ... + 2009 - 2011 + 2013 - 2015 + 2017

SSH của S = ( 2017 - 1) : 2 + 1 = 1009 (Số hạng)

=> S = 1 - 3 + 5 - 7 + ... + 2009 - 2011 + 2013 - 2015 + 2017 (1009 số hạng)

         = (1 - 3) + (5 - 7) + ... + (2009 - 2011) + (2013 - 2015) + 2017 (505 số hạng)

         = (-2) + (-2) + ... + (-2) + (-2) + 2017 (505 số hạng) 

         => (-2) . 504 + 2017

         = (-1008) + 2017 = 1009

Vậy S = 1009         

20 tháng 9 2015

2S=32+33+34+....+32016

2S-S=(32+33+34+...+32016)-(3+32+33+....+32015)

S=22016-3

 


 

7 tháng 12 2015

7S=7+7^2+7^3+7^4+...+7^2016

=>7S-S=(7+7^2+7^3+7^4+...+7^2016)-(1+7+7^2+7^3+...+7^2015)

=>6S=7^2016-1

=>6S+1=7^2016-1+1=7^2016(đpcm)

Ta có: \(S=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2014}\)

\(\Leftrightarrow\dfrac{-1}{7}\cdot S=\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+\left(-\dfrac{1}{7}\right)^3+...+\left(-\dfrac{1}{7}\right)^{2015}\)

\(\Leftrightarrow S-\dfrac{-1}{7}\cdot S=\left(-\dfrac{1}{7}\right)^0-\left(-\dfrac{1}{7}\right)^{2015}\)

\(\Leftrightarrow\dfrac{8}{7}\cdot S=1+\dfrac{1}{7^{2015}}\)

\(\Leftrightarrow S=\left(1+\dfrac{1}{7^{2015}}\right):\dfrac{8}{7}=\dfrac{\left(1+\dfrac{1}{7^{2015}}\right)\cdot7}{8}\)

26 tháng 1 2021

Cười cái gì mà cười

7 tháng 5 2016

Ta có : A= x^0+ x^1+ x^2+...+x^n => \(A=\frac{x^{n+1}-1}{x-1}\)

Chứng minh: xA=x1+x2+...+x^n+1

xA-A=A(x-1)=xn+1-x0=xn+1-1

Từ đó => điều trên

Vậy Ta có:

\(S=\frac{\left(-\frac{1}{7}\right)^{2017}-1}{-\frac{1}{7}-1}\)

21 tháng 3 2016

S=(-1/7)0+(-1/7)1+...+(-1/7)2007

-1/7.S=(-1/7)1+(-1/7)2+...+(-1/7)2008

-1/7.S-S=[(-1/7)1+(-1/7)2+...+(-1/7)2008]-[(-1/7)0+(-1/7)1+...+(-1/7)2007]

-8/7.S=(-1/7)2008-(-1/7)0

-8/7.S=(1/7)2008-1

.........................