Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=(−1/7)^0+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007
7S = 1+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007
=> 7S = 7+(−1/7)^1+(−1/7)^2+...+(−1/7)^2006
=> 6S = 6-(−1/7)^2007
=> S= 1-(−1/7^2007/6)
\(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\\ \Rightarrow7S=7+\left(-1\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2006}\\ \Rightarrow7S-S=\left[7+\left(-1\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2006}\right]-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\\ =7-\left(-\frac{1}{7}\right)-\left(-\frac{1}{7}\right)^{2007}\\ =\frac{50}{7}-\left(-\frac{1}{7}\right)^{2007}\\ \Rightarrow S=\frac{\frac{50}{7}-\left(-\frac{1}{7}\right)^{2007}}{6}\)
\(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+...+\left(-\frac{1}{7}\right)^{2007}\)
\(-\frac{1}{7}S=\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2008}\)
\(-\frac{1}{7}S-S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^{2008}\)
\(-\frac{8}{7}S=1+\frac{\left(-1\right)^{2008}}{7^{2008}}=1+\frac{1}{7^{2008}}=\frac{7^{2008}+1}{7^{2008}}\)
\(S=\frac{7^{2008}+1}{7^{2008}}:\left(-\frac{8}{7}\right)\)
HOK TOT
-1/7S=(-1/7)^1+(-1/7)^2+(-1/7)^3+...........+(-1/7)^2008
(-1/7)S-S=[(-1/7)^1+(-1/7)^2+........+(-1/7)^2008]-[(-1/7)^0+(-1/7)^1+.....+(-1/7)^2007]
S(-1/7-1)=(-1/7)^2008-(-1/7)^0
(-8/7)S=(-1/7)^2008-1
S=[(-1/7)^2008-1]:(-8/7)
S= -(1/7^0 + 1/7^1+ 1/7^2 + 1/7^3 +...+ 1/7^2016)
Xét A = 1/7^0 + 1/7^1 + 1/7^2 + 1/7^3 +...+ 1/7^2016
=>7A= 7 + 1/7^0 + 1/7^1 + ...+ 1/7^2015
=> 6A = 7 - 1/7^2016
=> A = (7 - 1/7^2016)/6
=>S=-(7-1/7^2016)/6