Cho ∆ABC cân tại A.Lấy P,Q lẫn lượt là trung điểm của AB,AC a)chứng minh tứ giác PQCB là hình thang cân b)biết PQ=4cm.Tính độ dài cạnh BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân
a) Ta có :
P là trung điểm AB
Q là trung điểm AC
PQ là đường trung bình tam giác ABC
Xét tứ giác BPQC , ta có :
PQ//BC( do PQ là đường trung bình tam giác ABC)
BPQC là hình thang (dấu hiệu nhận biết hình thang)
b)Ta có :
Q là trung điểm PE
Q là trung điểm AC
Q là trung điểm hai đường chéo của tứ giác AECP
Suy ra tứ giác AECP là hình bình hành
a) Ta có :
P là trung điểm AB
Q là trung điểm AC
⇒ PQ là đường trung bình tam giác ABC
Xét tứ giác BPQC , ta có :
PQ//BC( do PQ là đường trung bình tam giác ABC)
⇒BPQC là hình thang (dấu hiệu nhận biết hình thang)
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay \(BC=2\cdot MN=2\cdot8=16\left(cm\right)\)
b) Xét tứ giác BMNC có MN//BC(cmt)
nên BMNC là hình thang(Định nghĩa hình thang)
Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BMNC là hình thang cân
1.Giải:
a. Vì tam giác ABC vuông tại A và AM = \(\frac{1}{2}\)BC
=> AM là đường trung tuyến ứng với cạnh BC
=> M là trung điểm của cạnh BC
=> AM = BM = \(\frac{1}{2}\)BC
Vì AM = BM => Tam giác ABM cân tại M
b. Vì N là trung điểm của AB
=> MN là đường trung tuyến ứng với cạnh AB của tam giác ABM
Mà tam giác ABM cân tại M ( câu a )
=> MN đồng thời là đường cao xuất phát từ M của tam giác ABM
=> \(MN\perp AB\)
Do đó: MN//AC (cùng vuông góc với AB)
=> MNAC là hình thang
Mặt khác: \(\widehat{NAC}\)= \(^{90^0}\)(gt)
=> Tứ giá MNAC là hình thang vuông.
a: Xet ΔABC có AI/AB=AK/AC
nên IK//BC
=>BIKC là hình thang
mà góc B=góc C
nên BIKC là hình thang cân
b: Xét ΔBAC có BH/BC=BI/BA
nên HI//AC và HI=AC/2
=>HI//AK và HI=AK
=>AIHK là hình bình hành
mà AI=AK
nên AIHK là hình thoi
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
hay BMNC là hình thang
mà BN=CM
nên BMNC là hình thang cân
\(c,\) Vì AD//BP và AD=BP nên ADPB là hbh
Do đó O là trung điểm AP và BD
Xét tam giác ADP có DO và AN là trung tuyến giao tại G nên G là trọng tâm
Do đó \(DG=\dfrac{2}{3}DO\)
Mà \(DO=\dfrac{1}{2}BD\Rightarrow DG=\dfrac{2}{3}\cdot\dfrac{1}{2}BD=\dfrac{1}{3}BD\)
a: Xét ΔABC có
\(\dfrac{AP}{PB}=\dfrac{AQ}{QC}\)
Do đó: PQ//BC
Xét tứ giác BPQC có PQ//BC
nên BPQC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BPQC là hình thang cân