K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

bạn chụp thế này thì chết rồi 

30 tháng 9 2021

bruh so hard

:v

26 tháng 10 2021

Bài 4:

\(\Leftrightarrow n+1\in\left\{1;3\right\}\)

hay \(n\in\left\{0;2\right\}\)

26 tháng 10 2021

\(\left(n+4\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+3⋮\left(n+1\right)\)

\(\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Mà \(n\in N\)

\(\Rightarrow n\in\left\{0;2\right\}\)

21 tháng 10 2021

giúp em bài với,em đang vội,mn giúp em ạ

21 tháng 10 2021

Bài 4: 

b: \(B=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3-5-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3-y^3+2y^3-5-x^3-y^3\)

=-5

c: \(C=\left(x-1\right)^3-\left(x+1\right)^3-6\left(x+1\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1-6\left(x^2-1\right)\)

\(=-6x^2-2-6x^2+6\)

\(=-12x^2+4\)

22 tháng 10 2021

bai tap nay lop may day

24 tháng 10 2021

Điên à 

21 tháng 10 2021

Bài 4:

\(A=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ B=x^3-y^3-5+2y^3-x^3-y^3=-5\\ C=x^3-3x^2+3x-1-x^3-3x^2-3x-1-6x^2+6=4\)

câu 4: 

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\)

hay AH=6(cm)

b: Xét ΔBAC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

nên \(AM=\dfrac{BC}{2}=6.5\left(cm\right)\)

3) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m^2-6\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-6\right)\)

\(=4m^2-8m+4-4m^2+24\)

\(=-8m+28\)

Để phương trình có hai nghiệm phân biệt x1;x2 thì Δ>0

\(\Leftrightarrow-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{1}=2m-2\\x_1x_2=m^2-6\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=16\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-6\right)-16=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+12-16=0\)

\(\Leftrightarrow2m^2-8m=0\)

\(\Leftrightarrow2m\left(m-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(nhận\right)\\m=4\left(loại\right)\end{matrix}\right.\)