K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=152+202=625
  BC=25cm
* AH.BC=AB.AC
  AH.25=15.20
  AH.25=300
  AH=12cm

30 tháng 9 2021

tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
 AC2=252-152=400
 AC=20cm

13 tháng 10 2021

\(1,\widehat{B}+\widehat{C}=90^0\left(tg.ABC\perp A\right)\\ \Rightarrow\widehat{B}=90^0-60^0=30^0\\ 2,\tan\widehat{C}=\dfrac{AB}{AC}=\tan60^0=\sqrt{3}\Leftrightarrow AB=15\sqrt{3}\left(cm\right)\\ 3,BC=\sqrt{AB^2+AC^2}=30\left(cm\right)\left(pytago\right)\)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)

hay AH=7,2(cm)

a) ABC có

MA = MB ( gt )

NB = NC ( gt )

=> MN là đường trung bình của incrementABC

=> MN = 1 halfAC = 1 half.20 = 10 ( cm )

increment A B C spacevuông tại A 

=> B C squared space equals space A B squared space plus thin space A C squared space left parenthesis thin space P i t a g o space right parenthesis

=>B C space equals space square root of A B squared space plus thin space A C squared end root
space space space space space space equals space root index blank of 15 squared space plus thin space 20 squared end root

          = 25 cm

increment A B C space v u ô n g space t ạ i space A

AN là đường trung tuyến ( NB = NC )

=> AN = 1 half B C1 half.25 = 12,5 ( cm ))

b) ABDC có 2 đường chéo AD , BC cắt nhau tại N

mà CN = ND ( gt )

AN = ND ( gt )

=> ABDC là hình bình hành 

mà stack C A B with hat on top space equals space 90 degree

=> ABDC là hình chữ nhật 

*(Cho mình 1 nút like vs bn ơi )

29 tháng 12 2021

MA=12,5cm

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng vơi ΔBHA

b: BH=15^2/25=9(cm)

c: EH/EB=AH/AB=AC/BC

=>EH*BC=EB*AC