Chứng minh rằng : ƯCLN (a,b) x BCNN (a,b) = a x b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) đặt d = UCLN(a,b) => tồn tại m, n sao cho: a = dm ; b = dn
thấy UCLN(m, n) = 1, vì nếu m và n có 1 ước chung p > 1
m = p.m' ; n = p.n' thấy a = dpm' ; b = dpn' => dp là UC(a,b) mà dp > d trái giả thiết d là UCLN
vì UCLN(m,n) = 1 nên BCNN(a,b) = dmn
thấy: BCNN(a,b) * UCLN(a,b) = dmn.d = dm.dn = ab (đpcm)
Đặt d = ƯCLN(a;b) => a = da'; b = d.b' (a';b' nguyên tố cùng nhau)
Ta cần chứng minh: BCNN(a;b) . d = a.b Hay BCNN(a;b) = (a.b)/d . đặt m = (a.b)/d
+) Ta có: m = (a.b)/d = a.\(\frac{b}{d}\) = a.b'
m = b. \(\frac{a}{d}\) = b.a'
Mà a'; b' nguyên tố cùng nhau nên m là bội chung nhỏ nhất của a; b => BCNN(a;b) = (a.b)/d
=> BCNN(a;b) = (a.b)/ ƯCLN(a;b) => BCNN(a;b).ƯCLN(a;b) = a.b
Vậy...
vì a.b = BCNN(a,b).ƯCLN(a,b)
=>BCNN(a,b)=a,b:ƯCLN(a,b)
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}