Cho M = 71+72+73+...+7100.Tìm số dư của M khi chia cho 4?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 7 + 72 + 73 + 74 + ..... + 7100
M = 7+(1+7)+73+(1+7)+...+799+(1+7)
M = 7x8+73x8+...+799x8
M = 8x(7+73+...+799)
mà 8 chia hết 8 => 8(7+73+...+799) chia hết 8
Vậy M chia hết cho 8
\(A=7+7+7^2+...+7^{100}\)
\(7A=7^2+7^2+7^3+...+7^{101}\)
\(A=14+7^2+7^{101}\)
\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)
\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)
– Ở cột thứ hai : a = 64 ; b = 59 ; c = 3776.
Ta có : 64 = 7.9 + 1 nên 64 chia 9 dư 1 hay m = 1.
59 = 6.9 + 5 nên 59 chia 9 dư 5 hay n = 5.
Tích m.n = 5 chia 9 dư 5 nên r = 5.
c = 3776 có 3 + 7 + 7 + 6 = 23 chia 9 dư 5 nên c chia 9 dư 5 hay d = 5.
– Ở cột thứ ba: a = 72; b = 21; c = 1512.
Ta có : 72 = 8.9 chia hết cho 9 nên m = 0.
21 = 9.2 + 3 nên 21 chia 9 dư 3 hay n = 3.
Tích m.n = 0 ⋮ 9 nên r = 0.
c = 1512 có 1 + 5 + 1 + 2 = 9 ⋮ nên 1512 ⋮ 9 hay d = 0.
Do đó ta có bảng:
a | 78 | 64 | 72 |
b | 47 | 59 | 21 |
c | 3666 | 3776 | 1512 |
m | 6 | 1 | 0 |
n | 2 | 5 | 3 |
r | 3 | 5 | 0 |
d | 3 | 5 | 0 |
\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+.........+7^{100}\)
\(M=56.1+56.7^2+..........+7^{98}.56\)
\(M=56.\left(1+7^2+...........+7^{98}\right)=4.14.\left(1+7^2+.......+7^{98}\right)\)
Vậy M chia cho 4 dư 0 (chia hết cho 4)