K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

 y'=3x2-2(2m-3)x-(4m-15)           

để hs y có cực trị thì y'=0 có 2 nghiệm phân biệt

 Δ,=(2m-3)2-3(4m-15)>0

<=> 4m2-24m+54>0

<=>(2m-6)2+18>0 với mọi m

=>  hs luôn có cực trị với mọi m

15 tháng 11 2021

sai rồi b ơi

25 tháng 2 2018

19 tháng 12 2018

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

4 tháng 9 2018

10 tháng 3 2017

Đáp án D

1 tháng 10 2018

Chọn C

Hàm số có 3 cực trị

 

23 tháng 9 2018

y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = − m + 1 2  + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − m + 1 2  + 4 = 0 ⇔  m + 1 2 = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

4 tháng 3 2018

Đáp án D.

y = -x3 + (2m – 1)x2 – (2 – m)x – 2

TXĐ: D = R

y' = -3x2 + 2(2m – 1) – 2 + m

Đồ thị hàm số có cực đại và cực tiểu <=> Pt y’ = 0 có hai nghiệm phân biệt

<=>  Δ’ = (2m – 1)2 + 3(-2 + m) > 0 <=> 4m2 – m – 5 > 0 <=> ∈ (-∞; -1) ∪ (5/4; +∞)