cho hinh thang ABCD ( goc A = goc D =90 do).goi E la trung diem cua AD .ke AH vuong goc voi BE ,DI vuong goc voi CE,K laf giao diem cua AH va DI.
a)cmr:tu giac BHIC noi tiep
b)cmr :EK vuong goc voi BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AKCB có
AK//CB
AB//KC
Do đó: AKCB là hình bình hành
mà \(\widehat{KAB}=90^0\)
nên AKCB là hình chữ nhật
b: Xét ΔAHD có
E là trung điểm của HA
F là trung điểm của HD
DO đó: EF là đường trung bình
=>EF//AD và EF=AD/2
=>EF//BC và EF=BC
hay BCFE là hình bìnhhành
a, Théo t/c tổng 3 góc của 1 tam giác \(\Rightarrow\widehat{B}=60\)
Xét 2 tam giác vuống AHB và AHD (cạnh huyền cạnh góc vuông )
suy ra AB=AD mà B=60 suy ra tam giác ABD đều
b,Vì ABD đều suy ra D1=60 độ suy ra D2=120 độ
suy ra A1=C1=30 độ suy ra DAC cân tại D suy ra DA=DC
Xét 2 tam giác vuông ADH và CDE(cạnh huyền góc nhọn)
Hình tự vẽ
a, 2 tam giác đó cạnh huyền góc nhọn
b,c/m AB=BD
Trong 1 tam giác cân Có Be là p/g suy ra BE là trung trực ............
c,Sử dụng t/c góc ngoài
Nghỉ thôi, học hành j tầm này.
a,Xét tam giác HBE(H=90 độ) và tam giác ABE(A=90 độ) có:
BE chung
góc HBE= góc ABE
=> tam giác HBE=tam giác ABE( c.huyền .góc nhọn) (đpcm)
b,Vì BE là tia phân giác của góc xBy
Suy ra EB=EA (theo t/c tia phân giác)
AH cắt BE tại K
Xét tam giác EHK và tam giác EAK
Có:
EH=EA(cmt)
góc HEK= góc AEK(2 góc tương ứng)
EK chung
=> Tam giác HEK=tam giác AEK(cgc)
=>HK=AK (1)
=> góc HKB= góc BKA=90 độ (2)
Từ (1) và (2) suy ra BE là đường trung trực của AH (đpcm)
c, Xét tam giác EHC(H=90 độ) và tam giác KAE(A=90 độ)
có :
góc CEH= góc KEA ( 2 góc đối đỉnh)
EH=EA
=> tam giác EHC=tam giác KAE
=>AE<EC(cạnh góc vuông nhỏ hơn cạnh huyền)