Cho tam giác ABC có góc B < 90 độ900 và góc B = góc 2C. Kẻ đường cao AH. Trên tia đối của tia BA lấy điểm E sao cho BE = BH. Đường thẳng HE cắt AC tại D.
a. Chứng minh góc BEH= góc ACB
b. Chứng minh DH = DC = DA.
c. Lấy B’ sao cho H là trung điểm của BB’. Chứng minh tam giác AB’C cân.
d. Chứng minh AE = HC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải tại đây nha :))
https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-b-90-do-va-goc-b-2-goc-c-ke-duong-cao-ah-tren-tia-doi-cua-tia-ba-lay-diem-e-sao
a) S hình thoi là:
(19 x 12) : 2 = 114(cm2)
b) S hình thoi là;
(30 x 7) : 2 = 105(cm2)
Đề sai hay sao ý bạn ạ
B=90 độ =>B vuông góc vs AC rồi mà lại kẻ đg cao AH
Như vậy thì điểm B và H trùng nhau à ?
a) \(BEH\)cân tại \(B\)nên \(\widehat{E}=\widehat{H_1}\)
\(\widehat{ABC}=\widehat{E}+\widehat{H_1}=2\widehat{E}\)
\(\widehat{ABC}=2\widehat{C}\)
\(\Rightarrow\widehat{BEH}=\widehat{ACB}\)
b) Chứng minh được \(\Delta DHC\)cân tại \(D\)nên \(DC=DH\)
\(\Delta DHC\)có :
\(\widehat{DAH}=90^0-\widehat{C}\)
\(\widehat{DHA}=90^0-\widehat{H}_2=90^0-\widehat{C}\)
\(\Rightarrow\Delta DAH\)cân tại \(D\)nên \(DA=DH\)
c) \(\Delta ABB'\)cân tại \(A\)nên :
\(\widehat{B'}=\widehat{B}=2\widehat{C}\)
\(\widehat{B'}=\widehat{A_1}+\widehat{C}\)
\(\Rightarrow2\widehat{C}=\widehat{A_1}+\widehat{C}\)
\(\Rightarrow\widehat{C}=\widehat{A_1}\)
\(\Rightarrow\widehat{AB'C}\)cân tại \(B'\)
d) \(AB=AB'=CB'\)
\(BE=BH=B'H\)
Có : \(AE=AB+BE\)
\(HC=CB'+B'H\)
\(\Rightarrow AE=HC\)
a) Có góc ABH = góc BEH + BHE
Mà BEH = BHE
=> BEH=BHE=C
Có DHC=BHE
=> DHC=C => tam giác DHC cân tại D => DH=DC
Có góc AHD=HAD => DH=DA
b) tự làm nhé, hai tam giác này bằng nhau
c) ADB'H là hình thang --> góc DB'A = B'AH
Có tam giác ABB' cân => BAH=HAB'
=> AHB'= HAB' + HB'A = 3C
Sau đó biến đổi một vài góc nữa là ra.
c) Có tam giác ABB' cân =>góc ABB’= góc AB'B= ^B’AC+ ^ C =2^ C
=> ^B’AC= ^C=> TAM GIÁC AB’C cân tại B’.