K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

ĐKXĐ: \(x;y\ge\frac{1}{2}\)

Vì x,y khác 0 nên cùng chia 2 vế của pt bđ cho xy ta được

\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)

Ta có: \(\sqrt{2y-1}\le y\)(1)( \(y\ge\frac{1}{2}\))

Thật vậy \(\left(1\right)\Leftrightarrow2y-1\le y^2\)

                        \(\Leftrightarrow y^2-2y+1\ge0\)

                       \(\Leftrightarrow\left(y-1\right)^2\ge0\)(Luôn đúng)

Nên (1) đúng \(\Rightarrow\frac{\sqrt{2y-1}}{y}\le1\)

Tương tự \(\frac{\sqrt{2x-1}}{x}\le1\)

Do đó \(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}\le1+1=2\)

Dấu "=" xảy ra <=> x = y = 1 (T/M)

Vậy x = y = 1

19 tháng 1 2019

Incur: Góp thêm một cách c/m: \(\sqrt{2y-1}\le y\) là dùng cô si ngược nhé

11 tháng 4 2020

x(2y+3) = y +1 => y+1 chia hết cho 2y +3 

                         => 2y + 2 chia hết cho 2y +3 

                         => 2y + 3 - 1 chia hết cho 2y + 3 

                         => -1 chia hết cho 2y +3

                          => 2y + 3 = -1 

2y +3 = -1 = > y = -2  =>  -x = -1 => x=1

2y + 3 = 1 => y = 1 => x = 0

11 tháng 4 2020

Ta có : x .( 2y+ 3 ) = y + 1 

=> ( y + 1 ) \(⋮\)( 2y + 3 ) 

=> \(\left(2y+2\right)⋮\left(2y+3\right)\)

=> ( 2y + 3 - 1 ) \(⋮\) ( 2y+ 3 ) 

=> - 1 \(⋮\) ( 2y + 3 )

=> ( 2y+ 3 ) \(\in\left\{1;-1\right\}\)

TH1 : 

2y + 3 =-1 <=> y = -2 

                  =>  x = 1 

TH2 : 

2y + 3 = 1 <=> y = -1

                 => x = 0 

Vậy ta có các cặp số nguyên ( x , y ) thỏa mãn là : ( 0 , -1 ) ; ( 1 ; -2 ) 

a) => 2xy +3x=y+1

=> 2xy+3x-y=1

=> x(2y+3) -  1/2 (2y+3) +3/2 =1

=> (x-1/2)(2y+3)=1-3/2= -1/2

=> (2x-1)(2y+3)=-1

ta có bảng

...........

19 tháng 5 2016

 Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

19 tháng 5 2016

Nguyễn Thị Mai copy trên mạng,ko tính

NV
25 tháng 3 2021

\(\Leftrightarrow2x^2-x+1=xy+2y\)

\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)

\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)

Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)

Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)

\(\Rightarrow y=14\)

Vậy \(\left(x;y\right)=\left(9;14\right)\)

15 tháng 2 2021

.Ta có:

x4−5y=32x4−5y=32

→x−20y=6→x−20y=6

→x−6=20y→x−6=20y

→(x−6)y=20→(x−6)y=20

Mà x,y∈N→(x−6,y)x,y∈N→(x−6,y) là cặp ước của 2020 

Mặt khác y∈N→y≥0y∈N→y≥0

→(x−6,y)∈{(20,1),(10,2),(5,4),(4,5),(2,10),(1,20)}→(x−6,y)∈{(20,1),(10,2),(5,4),(4,5),(2,10),(1,20)}

→(x,y)∈{(26,1),(16,2),(11,4),(10,5),(8,10),(7,20)}