Chán vcl nên đố mn câu này
CM BĐT trên đúng với mọi : x,y>0\
1/x+1/y=4/x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
:\(x^4-4x+3=\left(x^4-x^3\right)+\left(x^3-x^2\right)+\left(x^2-x\right)-\left(3x-3\right)\)
\(=x^3\left(x-1\right)+x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x^3+x^2+x-3\right)\left(x-1\right)\)
\(=\left(x^2+2x+3\right)\left(x-1\right)^2\)(cái này bạn phân tích vế \(x^3+x^2+x-3=\left(x^2+2x+3\right)\left(x-1\right)\)là được
Ta có:\(\left(x-1\right)^2\ge0\)(luôn đúng).Dấu"="<=>x=1(1)
lại có \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2>0\)(2)
nhân vế (1) và (2) \(\Rightarrowđpcm\)
Dấu"="<=>x=1
Xong rồi đấy,bạn k cho mình nhé
a: =(x^2+3x)(x^2+3x+2)+1
=(x^2+3x)^2+2(x^2+3x)+1
=(x^2+3x+1)^2>=0 với mọi x
b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2
=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz
=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)
=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)
Ta có \(\dfrac{1}{\sqrt{x}}+\sqrt{x}\ge2\sqrt{\dfrac{1}{\sqrt{x}}.\sqrt{x}}=2;\dfrac{1}{\sqrt{y}}+\sqrt{y}\ge2\sqrt{\dfrac{1}{\sqrt{y}}.\sqrt{y}}=2\)
=> VT\(\ge4\)
dấu = xảy ra <=> x=y=1 (thỏa mãn điều kiện )
Mình áp dụng luôn Cô - si cho các số ta được
a) \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}\cdot\frac{18}{x}}=2.\sqrt{9}=2.3=6\)
b) \(y=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)
c) \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}\cdot\frac{1}{x+1}}-\frac{3}{2}=2\sqrt{\frac{3}{2}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
h) \(x^2+\frac{2}{x^2}\ge2\sqrt{x^2\cdot\frac{2}{x^2}}=2\sqrt{2}\)
g) \(\frac{x^2+4x+4}{x}=\frac{\left(x+2\right)^2}{x}\ge0\)
xét hiệu \(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{y+x}{xy}-\frac{4}{x+y}\)
\(=\frac{\left(x+y\right)^2}{xy\left(x+y\right)}-\frac{4xy}{xy\left(x+y\right)}=\frac{x^2+2xy+y^2-4xy}{x^2y+xy^2}\)
\(=\frac{\left(x-y\right)^2}{xy\left(x+y\right)}\)
vì (x-y)2 \(\ge0\)
ta có x,y > 0 nên xy(x+y)>0
\(\Rightarrow\)\(\frac{\left(x-y\right)^2}{xy\left(x+y\right)}\ge0\)hay \(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\)
vậy \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Sai đề kìa
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}\Leftrightarrow x=y\)
haiz!chán vcl nên mới trả lời câu này
Áp dụng bất đẳng thức AM-GM,ta có:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
dấu "=" xảy ra khi và chỉ khi \(x=y\)
\(\Rightarrow you\)sai đề