Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}=...\)
b/ \(\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=...\)
c/ \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=...\)
d/ \(\frac{x}{3}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=...\)
e/ \(\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5-5x+5x}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=...\)
f/ \(\frac{x^3+1}{x^2}=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge2\sqrt{\frac{x}{2}.\frac{x}{2}.\frac{1}{x^2}}=...\)
g/ \(\frac{x^2+4x+4}{x}=x+\frac{4}{x}+4\ge2\sqrt{x.\frac{4}{x}}+4=...\)
a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)
Dấu "=" xảy ra khi \(x+3=5-x\Leftrightarrow x=1\)
b/ \(y=x\left(6-x\right)\le\frac{1}{4}\left(x+6-x\right)^2=9\)
\("="\Leftrightarrow x=3\)
c/ \(y=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)
\("="\Leftrightarrow x=-\frac{1}{4}\)
d/ \(y=\frac{1}{2}\left(2x+5\right)\left(10-2x\right)\le\frac{1}{8}\left(2x+5+10-2x\right)^2=\frac{225}{8}\)
\("="\Leftrightarrow x=\frac{5}{4}\)
e/ \(y=3\left(2x+1\right)\left(5-2x\right)\le\frac{3}{4}\left(2x+1+5-2x\right)^2=27\)
\("="\Leftrightarrow x=1\)
f/ \(\frac{x}{x^2+2}\le\frac{x}{2\sqrt{x^2.2}}=\frac{1}{2\sqrt{2}}\)
\("="\Leftrightarrow x=\sqrt{2}\)
g/ \(y=\frac{x^2}{\left(x^2+\frac{3}{2}+\frac{3}{2}\right)^3}\le\frac{x^2}{\left(3\sqrt[3]{\frac{9}{4}x^2}\right)^3}=\frac{4}{243}\)
\("="\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\pm\sqrt{\frac{3}{2}}\)
1, \(\frac{3x-4}{x-2}>1\\ \frac{3\left(x-2\right)}{x-2}+\frac{2}{x-2}>1\\ 3+\frac{2}{x-2}>1\\ \frac{2}{x-2}>-2\\ \frac{1}{x-2}>-1\)
\(x-2< -1\\ x< 1\)
\(y=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{2\left(x-1\right)}{2\left(x-1\right)}}+\frac{1}{2}=\frac{5}{2}\)
Dấu "=" xảy ra khi \(\frac{x-1}{2}=\frac{2}{x-1}\Rightarrow x=3\)
\(y=\frac{5\left(3x-1\right)}{9}+\frac{5}{3x-1}+\frac{5}{9}\ge2\sqrt{\frac{25\left(3x-1\right)}{9\left(3x-1\right)}}+\frac{5}{9}=\frac{35}{9}\)
Dấu "=" xảy ra khi \(x=\frac{4}{3}\)
\(y=-2+\frac{2}{1-x}+\frac{3}{x}\ge-2+\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{1-x+x}=3+2\sqrt{6}\)
Dấu "=" xảy ra khi \(\frac{1-x}{\sqrt{2}}=\frac{x}{\sqrt{3}}\Rightarrow x=3-\sqrt{6}\)
\(y=x+\frac{9}{x}+2020\ge2\sqrt{\frac{9x}{x}}+2020=2026\)
Dấu "=" xảy ra khi \(x=3\)
A = \(\frac{3x}{2}+\frac{2}{x-1}=3.\frac{x-1}{2}+\frac{2}{x-1}+\frac{3}{2}\)\(\ge2\sqrt{3}+\frac{3}{2}\)
\(\Rightarrow\)min A = \(2\sqrt{3}+\frac{3}{2}\Leftrightarrow x=\frac{2}{\sqrt{3}}+1\)(thỏa mãn)
B = \(x+\frac{3}{3x-1}=\frac{1}{3}\left(3x-1+\frac{9}{3x-1}+1\right)\)\(\ge\frac{1}{3}\left(2\sqrt{9}+1\right)=\frac{7}{3}\)
\(\Rightarrow\)min B = \(\frac{7}{3}\Leftrightarrow x=\frac{4}{3}\)
\(A\) \(=\) \(3x^2\left(8-x^2\right)\le3\frac{\left(x^2+8-x^2\right)^2}{4}=48\)
\(\Rightarrow\) maxA = 48 \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)(thỏa mãn)
\(B=\) \(4x\left(8-5x\right)\)\(=\frac{4}{5}.5x\left(8-5x\right)\le\frac{4}{5}.\frac{\left(5x+8-5x\right)^2}{4}=\frac{64}{5}\)
\(\Rightarrow\)max B = \(\frac{64}{5}\Leftrightarrow x=\frac{4}{5}\)(thỏa mãn)
3. a) \(A=x+\frac{1}{x-1}=x-1+\frac{1}{x-1}+1\ge2\sqrt{\left(x-1\right)\cdot\frac{1}{x-1}}+1=3\)
Dấu "=" \(\Leftrightarrow x-1=\frac{1}{x-1}\Leftrightarrow x=2\)
Min \(A=3\Leftrightarrow x=2\)
b) \(B=\frac{4}{x}+\frac{1}{4y}=\frac{4}{x}+4x+\frac{1}{4y}+4y\cdot-4\left(x+y\right)\)
\(\ge2\sqrt{\frac{4}{x}\cdot4x}+2\sqrt{\frac{1}{4y}\cdot4y}-4\cdot\frac{5}{4}=5\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}\frac{4}{x}=4x\\\frac{1}{4y}=4y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)
Min \(B=5\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)
4. Chắc đề là tìm min???
\(C=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)
\(\ge2\sqrt{\left(a+b\right)\cdot\frac{1}{a+b}}+\frac{3}{1}=5\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a+b=\frac{1}{a+b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)
Min \(C=5\Leftrightarrow a=b=\frac{1}{2}\)
1. Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(\left(\frac{1}{p-a}+\frac{1}{p-b}\right)+\left(\frac{1}{p-b}+\frac{1}{p-c}\right)+\left(\frac{1}{p-c}+\frac{1}{p-a}\right)\)
\(\ge\frac{4}{2p-a-b}+\frac{4}{2p-b-c}+\frac{4}{2p-a-c}\) \(=\frac{4}{c}+\frac{4}{a}+\frac{4}{b}\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" \(\Leftrightarrow a=b=c\)
2. Áp dụng bđt Cauchy ta có :
\(a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b-1+1}{2}=\frac{ab}{2}\) . Dấu "=" \(\Leftrightarrow b-1=1\Leftrightarrow b=2\)
+ Tương tự : \(b\sqrt{a-1}\le\frac{ab}{2}\). Dấu "=" \(\Leftrightarrow a=2\)
Do đó: \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\). Dấu "=" \(\Leftrightarrow a=b=2\)
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
Mình áp dụng luôn Cô - si cho các số ta được
a) \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}\cdot\frac{18}{x}}=2.\sqrt{9}=2.3=6\)
b) \(y=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)
c) \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}\cdot\frac{1}{x+1}}-\frac{3}{2}=2\sqrt{\frac{3}{2}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
h) \(x^2+\frac{2}{x^2}\ge2\sqrt{x^2\cdot\frac{2}{x^2}}=2\sqrt{2}\)
g) \(\frac{x^2+4x+4}{x}=\frac{\left(x+2\right)^2}{x}\ge0\)