tìm GTNN của biểu thức \(\frac{7x-8}{2x-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
\(2x^2-4xy+8y^2+7x+6y-15.\)
= \(x^2+x^2-4xy+4y^2+4y^2+7x+6y-15\)
= \(\left(x^2-4xy+4y^2\right)+\left[x^2+7x+\left(\frac{7}{2}\right)^2\right]+\left[4y^2+6y+\left(\frac{3}{2}\right)^2\right]-\left(\frac{7}{2}\right)^2-\left(\frac{3}{2}\right)^2-15\)
= \(\left(x-2y\right)^2+\left(x+\frac{7}{2}\right)^2+\left(2y+\frac{3}{2}\right)^2-\frac{59}{2}\)
Vì \(\left(x-2y\right)^2+\left(x+\frac{7}{2}\right)^2+\left(2y+\frac{3}{2}\right)^2\ge0\forall x;y\)
=> \(\left(x-2y\right)^2+\left(x+\frac{7}{2}\right)^2+\left(2y+\frac{3}{2}\right)^2-\frac{59}{2}\ge0-\frac{59}{2}\forall x;y\)
=> \(\left(x-2y\right)^2+\left(x+\frac{7}{2}\right)^2+\left(2y+\frac{3}{2}\right)^2-\frac{59}{2}\ge-\frac{59}{2}\)
Vậy GTNN của bt là \(\frac{-59}{2}\Leftrightarrow\hept{\begin{cases}x-2y=0\\x+\frac{7}{2}=0\\2y+\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\Rightarrow\orbr{\begin{cases}x=-\frac{7}{4}\\y=-\frac{3}{2}\end{cases}}\\x=-\frac{7}{2}\\y=-\frac{3}{4}\end{cases}}\)
Có \(A=\frac{2x+1}{x^2+3}\)
\(\Leftrightarrow Ax^2+3A=2x+1\)
\(\Leftrightarrow Ax^2-2x+3A-1=0\)
Có \(\Delta'=1-A\left(3A-1\right)\)
\(=1-3A^2+A\)
Pt có nghiệm khi \(\Delta'\ge0\Leftrightarrow-3A^2+A+1\ge0\)
\(\Leftrightarrow\frac{1-\sqrt{13}}{6}\le A\le\frac{1+\sqrt{13}}{6}\)
Nên \(A_{min}=\frac{1-\sqrt{13}}{6}\)
Dấu "=" \(\Leftrightarrow\frac{2x+1}{x^2+3}=\frac{1-\sqrt{13}}{6}\)
Giải ra tìm đc x
Vậy .............
\(A=\frac{x^2+2x+3}{x^2+2}\)
\(A=\frac{x^2+2+2x+1}{x^2+2}\)
\(A=\frac{x^2+2}{x^2+2}+\frac{2x+1}{x^2+2}\)
\(A=1+\frac{x^2+2-x^2+2x-1}{x^2+2}\)
\(A=1+\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}\)
\(A=1+1-\frac{\left(x-1\right)^2}{x^2+2}\)
\(A=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{\left(x^2+4x+4\right)+\left(x^2+2\right)}{2\left(x^2+2\right)}=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}+\frac{1}{2}\ge\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của A là \(\frac{1}{2}\) khi x = -2
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
ai giúp với plsss