CMR: (ab+bc+ac)(a+b+c) ≥ 9abc
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
N
0
RD
10 tháng 5 2019
\(\Leftrightarrow2+9abc\ge7\left(ab+bc+ca\right)\)(1)
Đặt \(\left\{{}\begin{matrix}abc=r\\ab+bc+ca=q\\a+b+c=p\end{matrix}\right.\)
Ta có:\(r\ge\frac{p\left(4q-p^2\right)}{9}\)(cái này bạn gõ schur trên gg là ra)
\(\Leftrightarrow9r\ge4q-1\)
\(\Rightarrow2+9r\ge2+4q-1=1+4q\)
Lại có:\(3q\le p^2=1\)(bạn tự chứng minh)
\(\Rightarrow1+4q\ge3q+4q=7q\)
\(\Rightarrow2+9r\ge7q\left(đpcm\right)\)
"="\(\Leftrightarrow a=b=c=\frac{1}{3}\)
A
Cho a,b,c > 0 CMR :
\(a+b+c+\frac{9abc}{ab+bc+ca}\ge4(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a})\)
0
Áp dụng bất đẳng thức Cô-si:
\(VT\ge3\sqrt[3]{\left(abc\right)^2}\cdot3\sqrt[3]{abc}=9\sqrt[3]{\left(abc\right)^3}=9\)
Dấu "=" khi a = b = c
nhầm bước = 9abc nhé