K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

nối BE , CD

=> \(\widehat{BEC}=90,\widehat{CDB}=90\)

MÀ \(\widehat{ACB}=\widehat{ABC}=60\)

=>\(\widehat{CBE}=\widehat{BCD}=90-60=30\)

=> CUNG CE = CUNG BD 

VÌ TAM GIÁC ĐỀU => CE VỪA LÀ ĐƯỜNG CAO CŨNG LÀ PHÂN GIÁC => CUNG BD = CUNG DE

10 tháng 3 2021

a) Gọi O là trung điểm của BC.

Ta có \(\stackrel\frown{BD}=\stackrel\frown{DE}=\stackrel\frown{EC}\Rightarrow\widehat{BOD}=\widehat{DOE}=\widehat{EOC}=60^o\).

Từ đó CE // AB, BD // AC.

Suy ra \(\Delta ABN\sim\Delta ECN\).

b) Theo tính đối xứng ta có BM = CN.

Ta có \(\dfrac{BN}{NC}=\dfrac{AB}{CE}=\dfrac{AB}{CO}=2\Rightarrow BN=2NC\Rightarrow MN=NC\).

Dễ dàng suy ra đpcm.

1 tháng 3 2022

gfvfvfvfvfvfvfv555

a: Xét (O) có 

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét ΔABC có

BD là đường cao

CE là đường cao

BD cắt CE tại H

Do đó: AH⊥BC

Bài 1:

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB>AC

nên BD>CD

a: góc BEC=1/2*180=90 độ

góc BDC=1/2*180=90 độ

góc AEH+góc ADH=180độ

=>AEHD nội tiếp

b: Xet ΔABC có BD,CE là đường cao

BD cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC

Xét ΔSBE và ΔSDC co

góc SBE=góc SDC

góc S chung

=>ΔSBE đồng dạngvơi ΔSDC

=>SB/SD=SE/SC

=>SB*SC=SD*SE

c: góc AFC=góc AEC=90 độ

=>AEFC nội tiếp

=>góc FEC=góc FAC

a) Xét (O) có

\(\widehat{DBE}\) là góc nội tiếp chắn \(\stackrel\frown{DE}\)

Do đó: \(\widehat{DBE}=\dfrac{1}{2}\cdot sđ\stackrel\frown{DE}\)(Định lí góc nội tiếp)

\(\Leftrightarrow\widehat{DBE}=\dfrac{1}{2}\cdot60^0=30^0\)

Xét (O) có

ΔBEC nội tiếp đường tròn(B,E,C∈(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

⇒BE⊥CE tại E

hay BE⊥AC tại E

Ta có: ΔAEB vuông tại E(BE⊥AC tại E)

nên \(\widehat{EAB}+\widehat{ABE}=90^0\)(hai góc nhọn phụ nhau)

\(\widehat{BAC}=90^0-\widehat{ABE}=90^0-30^0\)

\(\widehat{BAC}=60^0\)

Vậy: \(\widehat{BAC}=60^0\)