K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bán kính là:

\(R=\dfrac{2a\sqrt{3}}{3}\)

Tâm của ba đường tròn này sẽ nằm trên đường trung trực của AB

30 tháng 9 2021

bạn có thể cho mình xem hình đc ko và giải thích lí do vì sao nữa

 

7 tháng 9 2023

Xét \(\Delta\) vuông tại H \(ABH\) có :

\(tan\widehat{BAH}=tan60^o=\dfrac{BH}{AH}\Rightarrow BH=AH.tan60^o=2\sqrt[]{3}.\sqrt[]{3}=6\)

Xét \(\Delta\) vuông tại H \(ACH\) có :

\(\widehat{HAC}=90^o-\widehat{BAH}=90^o-60^o=30^o\)

\(tan\widehat{HAC}=tan30^o=\dfrac{CH}{AH}\Rightarrow CH=AH.tan30^o=2\sqrt[]{3}.\dfrac{1}{\sqrt[]{3}}=2\)

Tâm đường tròn ngoại tiếp tam giác vuông ABC là trung điểm BC

\(\Rightarrow\) Bán kính đường tròn này là :

\(R=\dfrac{BC}{2}=\dfrac{BH+CH}{2}=\dfrac{6+2}{2}=4\)

12 tháng 3 2017

Giải bài 6 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vì tam giác ABC là tam giác đều nên Giải bài 6 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

O tâm đường tròn ngoại tiếp tam giác ABC nên O là giao điểm 3 đường trung trực 3 cạnh- đồng thời O là giao điểm 3 đường phân giác của tam giác ABC

* Xét tam giác AOB có:

* Tượng tự ta được: 

19 tháng 1 2021

A B C O 1 2 1 2 1 2

a) Ta có : ^A = ^B = ^C =60^o ( gt )

Tâm O của đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực của ba cạnh cũng chính là giao điểm của ba đường phân giác của tam giác đều ABC

Nên ^A1 = ^A2 = ^B1 = ^B2 = ^C1 = ^C2 = 30^o

=> ^AOB = 180^o - ^A1 - ^B1 = 180^o - 30^o - 30^o = 120^o

Tương tự ta có : ^AOB = ^BOC = ^COA = 120^o

b) Từ ^AOB = ^BOC = ^COA = 120^o , ta có :

\(\Rightarrow sđ\widebat{AB}=sđ\widebat{CA}=sđ\widebat{CB}=120^o\)

\(\Rightarrow sđ\widebat{ABC}=sđ\widebat{BCA}=sđ\widebat{CAB}=360^o-120^o=240^o\)

 

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0

ΔABC vuông tại A

=>AB^2+AC^2=BC^2

=>BC^2=12^2+16^2=400

=>BC=20

Xét ΔABC vuông tại A có sin C=AB/BC=3/5

nên góc C\(\simeq\)37 độ

=>góc B=53 độ

ΔABC vuông tại A

=>A,B,C cùng nằm trên đường tròn đường kính BC

=>R=BC/2=20/2=10