K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2019

Giải : Để \(\frac{x^2+2}{x^2-3}\)là số nguyên <=> x2 + 2 \(⋮\)x2 - 3

Ta có : x2 + 2 = (x2 - 3) + 5

Để x2 + 2 \(⋮\)x2 - 3 thì 5 \(⋮\)x2 - 3 => x2 - 3 \(\in\)Ư(5) = {1; -1; -5; 5}

Lập bảng : 

x2 -31-15-5
   x 2;-2\(\varnothing\)\(\varnothing\)\(\varnothing\)

Vậy ...

31 tháng 3 2018

mấy bạn giúp mik với

31 tháng 3 2018

giúp gì thế

18 tháng 1 2021

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

b) Ta có : \(A=\frac{x+4}{x-3}=\frac{x-3+7}{x-3}=1+\frac{7}{x-3}\)

Để A đạt giá trị nguyên thì \(\frac{7}{x-3}\)đạt giá trị nguyên

=> 7 ⋮ x - 3

=> x - 3 ∈ Ư(7) = { ±1 ; ±7 }

x-31-17-7
x4210-4

So với ĐKXĐ ta thấy x = 4 , x = 10 , x = -4 thỏa mãn 

Vậy với x ∈ { ±4 ; 10 } thì A đạt giá trị nguyên

18 tháng 1 2021

(....) dùng để nhìn được chữ số ở phân số cuối cùng thôi, ko dùng để làm gì.

( ác ) là từ ( các ) 

(gia strij) là từ ( giá trị )

7 tháng 12 2016

\(\frac{x^3-2x^2+x+2}{x-2}=\frac{x^2\left(x-2\right)+\left(x-2\right)+4}{x-2}=\frac{\left(x-2\right)\left(x^2+1\right)+4}{x-2}\)

\(=\frac{\left(x-2\right)\left(x^2+1\right)}{x-2}+\frac{4}{x-2}=x^2+1+\frac{4}{x-2}\)

\(x^2+1+\frac{4}{x-2}\) nguyên khi và chỉ khi 4 chia hết cho x-2

<=>\(x-2\inƯ\left(4\right)=\left\{-4;-1;1;4\right\}\)

<=>\(x\in\left\{-2;1;3;6\right\}\)

Vậy ..................

4 tháng 12 2018

Nguyên Dương Hay Nguyên Âm

4 tháng 12 2018

\(A=\frac{\left(x^4+4x^2+4\right)+\left(3x^3+6x\right)-\left(2x^2+4\right)-2}{x^2+2}\)

\(A=\frac{\left(x^2+2\right)^2+3x\left(x^2+2\right)-2\left(x^2+2\right)-2}{x^2+2}\)

\(A=\frac{\left(x^2+2\right)\left(x^2+3x\right)}{x^2+2}-\frac{2}{x^2+2}=x^2+3x-\frac{2}{x^2+2}\)

Để A là số nguyên, mà x là số nguyên nên \(x^2+3x\)nguyên, do đó \(\frac{2}{x^2+2}\inℤ\)

Do \(x^2+2\ge2\) nên \(x^2+2=2\Leftrightarrow x=0\)

2 tháng 5 2017

KL cho mình sửa x\(\in\){1;-1;-7;3;5;11}

KL của kudo shinichi vẫn thiếu 1

2 tháng 5 2017

Gọi phân số là A

\(A=\frac{2x+5}{x-2}=\frac{2x-4+9}{x-2}=\frac{2.\left(x-2\right)+9}{x-2}=2+\frac{9}{x-2}\)

Để A là số nguyên thì x là ước nguyên của 9

\(x-2=1\Rightarrow x=3\)

\(x-2=3\Rightarrow x=5\)

\(x-2=9\Rightarrow x=11\)

\(x-2=-1\Rightarrow x=1\)

\(x-2=-3\Rightarrow x=-1\)

\(x-2=-9\Rightarrow x=-7\)

KL : \(x\in\){ 3 ; 5 ; 11; ; -1 ; -7 }

Ai thấy đúng thì ủng hộ nha

27 tháng 6 2020

A = \(6\)

27 tháng 6 2020

bạn có thể giải chi tiết giúp mình đc ko