\(\frac{3\sqrt{x}}{x+2}\) tìm các số thực x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{\sqrt{x}-5}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}-\frac{3x+4\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)
\(P=\frac{x-3\sqrt{x}-10+x+4\sqrt{x}+3-3x-4\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)
\(P=\frac{-x-3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\)
để P > -2
\(\Rightarrow\frac{-\sqrt{x}-2}{\sqrt{x}-5}>-2\) đoạn này đang chưa nghĩ ra
c, \(P=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\in Z\) \(\Rightarrow-\sqrt{x}-2⋮\sqrt{x}-5\)
=> -căn x + 5 - 7 ⋮ căn x - 5
=> -(căn x - 5) - 7 ⋮ căn x - 5
=> 7 ⋮ x - 5 đoạn này dễ
a, Với \(x\ge0;x\ne25\)thì \(P=\frac{\sqrt{x}+2}{5-\sqrt{x}}\) đoạn này đúng rồi
\(P>-2\)\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}>-2\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}+2>0\)
\(\Leftrightarrow\frac{12-\sqrt{x}}{5-\sqrt{x}}>0\)
Xét 2 trường hợp cùng âm, cùng dương hoặc "trong trái ngoài cùng"
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}>12\\0\le\sqrt{x}< 5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>144\\0\le x< 25\end{cases}}\)
Làm luôn cho đầy đủ =)
Đặt Q = \(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)+\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\)
\(^{Q^3}\)= 3 + \(\sqrt{\frac{x}{27}}\)+3 - \(\sqrt{\frac{x}{27}}\)+3(\(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)*\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\) )(\(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)+\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\))
\(Q^3\)= 6 +3 \(\sqrt[3]{\left(3+\sqrt{\frac{x}{27}}\right)\left(3-\sqrt{\frac{x}{27}}\right)}\)\(Q\)
\(Q^3\)= 6+ 3\(\sqrt[3]{\left(3^2-\left(\sqrt{\frac{x}{27}}\right)^2\right)}\)\(Q\)
\(Q^3\)= 6 + 3 \(\sqrt[3]{9-\frac{x}{27}}\)\(Q\)
\(Q^3\)= 6 + 3\(\sqrt[3]{\frac{243-x}{27}}\)\(Q\)
\(Q^3\)= 6 + \(\sqrt[3]{243-x}\)\(Q\)
\(Q\)( \(Q^2\)- \(\sqrt[3]{243-x}\)) =6
\(Q\)=\(\frac{6}{Q^2-\sqrt[3]{243-x}}\)
Vì Q \(\in\)Z nên \(Q^2\)\(\in\)\(Z\), 6\(\in\)\(Z\) nên \(\sqrt[3]{243-x}\)\(\in\)\(Z\); \(Q^2\)- \(\sqrt[3]{243-x}\)\(\in\)\(Ư\left(6\right)\)=\(\left\{+-1;+-2;+-3;+-6\right\}\)
Suy ra 243 -x \(\in\)+ -1; + -8 ;+-27;....
\(Q^2\)-\(\sqrt[3]{243-x}\)= 1 \(\Rightarrow\)\(Q^2\)= 1+\(\sqrt[3]{243-x}\)Vì Q\(\in\)Z nên \(\sqrt[3]{243-x}\)= 8
Suy ra x=241 hoặc x=245
Vậy......
Không biết mk lm đúng hay sai mong mấy bn đóng góp ý kiến . Cảm ơn nhiều ạ
chu vi của một hình chữ nhật là 96cm . Nếu thêm vào chiều rộng 3cm và bớt ở chiều dài đi 3cm . Thì hình chữ nhật đó thành hình vuông . Tính diện tích hình chữ nhật đó
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
Theo điều kiện giả thiết, ta có:\(\sqrt{3}\ge x+y+z\Rightarrow3\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le1\)\(\Rightarrow VT\le\frac{x}{\sqrt{x^2+xy+yz+zx}}+\frac{y}{\sqrt{y^2+xy+yz+zx}}+\frac{z}{\sqrt{z^2+xy+yz+zx}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+x}.\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\)\(\le\frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)
\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)
\(\Rightarrow T\ge1\)
Bài 2:
[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam
Theo đề bài, ta có:
\(x^3+y^3=x^2-xy+y^2\)
hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)
+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)
+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)
Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3