K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

\(\sqrt{6+\sqrt{9}}-\sqrt{12+\sqrt{576}}\)

\(=\sqrt{6+\sqrt{3^2}}-\sqrt{12+\sqrt{24^2}}\)

\(=\sqrt{6+3}-\sqrt{12+24}\)

\(=\sqrt{9}-\sqrt{36}\)

\(=\sqrt{3^2}-\sqrt{6^2}\)

\(=3-6\)

\(=-3\)

11 tháng 1 2019

\(\sqrt{6+\sqrt{9}}-\sqrt{12+\sqrt{576}}=\sqrt{6+3}-\sqrt{12+24}\)

\(=\sqrt{9}-\sqrt{36}=3-6=\left(-3\right)\)

8 tháng 9 2017

Ta có : \(\frac{3}{\sqrt{n}+\sqrt{n+4}}=\frac{3}{4}.\frac{4}{\sqrt{n}+\sqrt{n+4}}=\frac{3}{4}.\frac{4\left(\sqrt{n+4}-\sqrt{n}\right)}{\left(\sqrt{n+4}+\sqrt{n}\right)\left(\sqrt{n+4}-\sqrt{n}\right)}\)

\(=\frac{3}{4}.\frac{4\left(\sqrt{n+4}-\sqrt{n}\right)}{n+4-n}=\frac{3}{4}.\frac{4\left(\sqrt{n+4}-\sqrt{n}\right)}{4}=\frac{3}{4}\left(\sqrt{n+4}-\sqrt{n}\right)\)

Áp dụng ta được :

\(\frac{3}{\sqrt{4}+\sqrt{8}}+\frac{3}{\sqrt{8}+\sqrt{12}}+\frac{3}{\sqrt{12}+\sqrt{16}}+...+\frac{3}{\sqrt{572}+\sqrt{576}}\)

\(=\frac{3}{4}\left(\sqrt{8}-\sqrt{4}+\sqrt{12}-\sqrt{8}+\sqrt{16}-\sqrt{12}+...+\sqrt{576}-\sqrt{572}\right)\)

\(=\frac{3}{4}\left(\sqrt{576}-\sqrt{4}\right)=\frac{3}{4}\left(24-4\right)=\frac{3}{4}.20=15\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:
a.

\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)

$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$

$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$

b.

$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$

$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$

$=|\sqrt{3}-3|+|\sqrt{3}+3|$

$=(3-\sqrt{3})+(\sqrt{3}+3)=6$

c.

$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$

$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$

$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$

17 tháng 7 2023

1) \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)

\(=2+\sqrt{5}+2-\sqrt{5}\)

\(=4\)

2) \(\sqrt{12-6\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)

\(=\sqrt{3^2-2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{3^2+2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)

\(=\left|3-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)

\(=3-\sqrt{3}+3+\sqrt{3}\)

\(=6\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

7.

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+3+2\sqrt{4.3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{(\sqrt{4}+\sqrt{3})^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10(2+\sqrt{3})}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25+3-2.5\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{(5-\sqrt{3})^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5(5-\sqrt{3})}}=\sqrt{4+\sqrt{25}}=\sqrt{4+5}=3\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

5.

\(\sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}=\sqrt{6+2\sqrt{5}-\sqrt{20+9+2\sqrt{20.9}}}\)

\(=\sqrt{6+2\sqrt{5}-\sqrt{(\sqrt{20}+3)^2}}=\sqrt{6+2\sqrt{5}-(\sqrt{20}+3)}=\sqrt{3}\)

6.

\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\)

\(=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{(2+5+2\sqrt{2.5})+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{2+5+2\sqrt{2.5}}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{(\sqrt{2}+\sqrt{5})^2}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}-\sqrt{(\sqrt{2}+\sqrt{5})^2}=|\sqrt{2}+\sqrt{5}+1|-|\sqrt{2}+\sqrt{5}|=1\)

16 tháng 6 2021

\(D=\sqrt{9+6\sqrt{2}}-\sqrt{9-6\sqrt{2}}-\sqrt{21-12\sqrt{3}}\)

\(D=\sqrt{9+2.\sqrt{3}.\sqrt{3}.\sqrt{2}}-\sqrt{9-2\sqrt{3}.\sqrt{3}.\sqrt{2}}-\sqrt{21-2.2\sqrt{3}.3}\)

\(D=\sqrt{\left(\sqrt{6}\right)^2+2\sqrt{6}.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{6}\right)^2-2\sqrt{6}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(-\sqrt{3^2-2.3.2\sqrt{3}+\left(2\sqrt{3}\right)^2}\)

\(D=\sqrt{\left(\sqrt{6}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{6}-\sqrt{3}\right)^2}-\sqrt{\left(3-2\sqrt{3}\right)^2}\)

\(D=\sqrt{6}+\sqrt{3}-\sqrt{6}+\sqrt{3}-2\sqrt{3}+3=3\)

27 tháng 6 2021

`M=sqrt{9+4sqrt5}-sqrt{6-2sqrt5}`

`=sqrt{(2+sqrt5)^2}-sqrt{(sqrt5-1)^2}`

`=2+sqrt5-(sqrt5-1)`

`=2+sqrt5-sqrt5+1=3`

`N=sqrt{7-4sqrt3}-sqrt{12-6sqrt3}`

`=sqrt{(2-sqrt3)^2}-sqrt{(3-sqrt3)^2}`

`=2-sqrt3-(3-sqrt3)`

`=2-sqrt3-3+sqrt3=-1`

a) Ta có: \(M=\sqrt{9+4\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5}+2-\left(\sqrt{5}-1\right)\)

\(=3\)

b) Ta có: \(N=\sqrt{7-4\sqrt{3}}-\sqrt{12-6\sqrt{3}}\)

\(=2-\sqrt{3}-\left(3-\sqrt{3}\right)\)

=-1

a) \(\sqrt{19-6\sqrt{2}}=3\sqrt{2}-1\)

b) \(\sqrt{11-6\sqrt{2}}=3-\sqrt{2}\)

d) \(\sqrt{21+12\sqrt{3}}=2\sqrt{3}+3\)

e) \(\sqrt{57-40\sqrt{2}}=4\sqrt{2}-5\)

9: \(A=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{14-6\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\dfrac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)

10: \(A=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

11: \(A=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\dfrac{2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

12: \(B=\left(3+\sqrt{3}\right)\sqrt{12-6\sqrt{3}}\)

\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)

=9-3=6

13: \(A=\sqrt{5}-2-\left(3-\sqrt{5}\right)\)

\(=\sqrt{5}-2-3+\sqrt{5}=2\sqrt{5}-5\)