Cho x thuộc \(\left\{-2;-1;0;....;11\right\}\)
y thuộc \(\left\{-89;-88;-87;...0;1.\right\}\)
Tìm GTLN, GTNN của x và y.
Ai nhanh và có lới giải mik tick.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để A thuộc Z => x^2 - 3 chia hết cho x (chỉ cần bỏ căn là sẽ hiểu )
a, 4C = 12|x|+8/4|x|-5 = 3 + 23/|x|-5 <= 3 + 23/0-5 = -8/5
=> C <= -2/5
Dấu "=" xảy ra <=> x=0
Vậy Min ...
b, Để C thuộc N => 3|x|+2 chia hết cho 4|x|-5
=> 4.(3|x|+2) chia hết cho 4|x|-5
<=> 12|x|+8 chia hết cho 4|x|-5
<=> 3.(|x|+5) + 23 chia hết cho 4|x|-5
=> 23 chia hết chi 4|x|-5 [ vì 3.(4|x|-5) chia hết cho 4|x|-5 ]
Đến đó bạn tìm ước của 23 rùi giải
ĐKXĐ: \(x\ne0\)
\(y=\sqrt{\frac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)
\(y=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)
\(y=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(y=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|\)
Ta có bảng xét dấu:
x 0 2 x - 2 x 0 0 - - - + + +
Với \(x< 0,y=\frac{x^2+3}{-x}+2-x=\frac{2x^2-2x+3}{-x}\)
Với \(0< x\le2,y=\frac{x^2+3}{x}+2-x=\frac{2x+3}{x}\)
Với \(x>2,y=\frac{x^2+3}{x}+x-2=\frac{2x^2-2x+3}{x}\)
- Ta thấy ngay, với cả ba trường hợp thì \(y\in Z\Leftrightarrow x\in U\left(3\right)=\left\{-3;-1;1;3\right\}\)
a) A = \(\dfrac{\left(x-3\right)\left(x+3\right)-\left(4x-1\right)\left(x-3\right)}{\left(x-3\right)^2}=\dfrac{\left(x-3\right)\left(x+3-4x-1\right)}{\left(x-3\right)^2}=\dfrac{2-3x}{x-3}\)
a) \(A=\dfrac{x^2-9-\left(4x-2\right)\left(x-3\right)}{x^2-6x+9}\left(ĐKXĐ:x\ne3\right)\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-\left(4x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3-4x+2\right)}{\left(x-3\right)^2}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(-3x+5\right)}{\left(x-3\right)^2}=\dfrac{-3x+5}{x-3}\)
b) Ta có: A = \(\dfrac{-3x+5}{x-3}=\dfrac{-3}{x-3}-4\)
Để A là số nguyên thì \(-3⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)
Do đó:
x - 3 = -3 => x = 0 (nhận)
x - 3 = -1 => x = 2 (nhận)
x - 3 = 1 => x = 4 (nhận)
x - 3 = 3 => x =6 (nhận)
Vậy \(x\in\left\{0;2;4;6\right\}\) thì A nguyên
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)