Cho biết \(AH\perp BC,AH=12cm,BC=25cm,BH=9cm\)
Tính độ dài đoạn thẳng AB,AC
Tam giac1 ABC có phải là tam giác vuông ko?Vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Tính độ dài đoạn thẳng AB
Áp dụng định lí Pi - ta -go cho Δ ABH vuông tại H có :
\(AB^2=AH^2+BH^2=12^2+9^2=144+81=225\)
=> \(AB=\sqrt{225}=15\) ( cm )
*Tính độ dài đoạn thẳng AC
Ta có : \(HC=BC-BH=25-9=16\left(cm\right)\)
Áp dụng định lí Pi - ta - go cho Δ AHC vuông tại H có :
\(AC^2=AH^2+HC^2=12^2+16^2=144+256=400\)
=> \(AC=\sqrt{400}=20\left(cm\right)\)
* Xét tam giác ABC có : \(BC^2=25^2=625\)
mặt khác : \(AB^2+AC^2=15^2+20^2=225+400=625\)
=> Δ ABC vuông tại A
Hình vẽ :
a:
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
=>BH(BH+CH)=20
=>BH*(BH+4BH)=20
=>5BH^2=20
=>BH^2=4
=>BH=2(cm)
=>CH=8cm
b: \(AH=\sqrt{2\cdot8}=4\left(cm\right)\)
S ABC=1/2*AH*BC
=1/2*4*10
=20cm2
Bai 1:
Ap dung dinh li Py-ta-go vao tam giac AHB ta co:
AH^2+BH^2=AB^2
=>12^2+BH^2=13^2
=>HB=13^2-12^2=25
Tuong tu voi tam giac AHC
=>AC=20
=>BC=25+16=41
Áp dụng định lí Pi-ta-go trong tam giác ABC vuông tại A :
AB2 + AC2 = BC2
⇒ AC = \(\sqrt{13^2-12^2}\) = 5(cm)
M là trung điểm của AB ⇒ AM = \(\dfrac{1}{2}AB = 6(cm)\)
Áp dung định lí Pi-ta-go trong tam giác AMC vuông tại A :
AM2 + AC2 = CM2
⇒ CM = \(\sqrt{6^2+5^2}\) = \(\sqrt{61}\)(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=13^2-12^2=25\)
\(\Leftrightarrow AC=\sqrt{25}=5\left(cm\right)\)
Ta có: M là trung điểm của AB(gt)
nên \(AM=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACM vuông tại A, ta được:
\(CM^2=AC^2+AM^2\)
\(\Leftrightarrow CM^2=5^2+6^2=61\)
hay \(CM=\sqrt{61}cm\)
Vậy: \(CM=\sqrt{61}cm\)
75% = 3/4
Tổng độ dài AB và AC là: 3 + 4 = 7 (phần)
Giá trị 1 phần: 120 : ( 3 + 4 + 5) = 10 (cm)
Cạnh AC: 10 x 3 = 30 (cm)
Cạnh AB: 10 x 4 = 40 (cm)
Cạnh BC: 10 x 5 = 50 ( cm)
DT tam giác ABC:( 30 x 40): 2= 60 (cm2)
Chiều cao tương ứng của cạnh BC: 60 x 2 : 50 = 24
Học Tốt ^-^