cho p và 2p + 1 là các số nguyên tố ( p>5). Hỏi 4p + 1 là số nguyên tố hay hợp số ?
( mong các bạn giúp mk! cảm ơn RẤT RẤT NHIỀU !)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 3 số tự nhiên tiếp : \(4p\) , \(4p+1\) , \(4p+2\) . Trong ba số này ắt hẳn ta sẽ tìm được duy nhất một số chia hết cho 3 (1)
Ta xét :
+ Vì p là số nguyên tố ( p > 5 ) nên p không chia hết cho 3 . Do vậy 4p không chia hết cho 3 (2)
+ Vì 2p+1 là số nguyên tố và p > 5 nên \(2p+1>3\) . Suy ra \(2p+1\) không chia hết cho 3 . Mà \(4p+2=2\left(2p+1\right)\) => \(4p+2\) không chia hết cho 3 (3)
Từ (1) , (2) , (3) ta suy ra được \(4p+1\) chia hết cho 3 . Mà p > 5 =>\(4p+1>3\) không thể là số nguyên tố , hay nói cách khác \(4p+1\) là hợp số.
p+2 ;p+8 ;4*p*p+1
+ nếu p=2p=2 thì p+2=4⋮2p+2=4⋮2 là hợp số (loại)
+ p=3p=3 thì p+2=5p+2=5 là số nguyên tố; p+8=11p+8=11 là số nguyên tố; 4p2+1=374p2+1=37 là số nguyên tố (tm)
+ với p>3p>3 thì p=3k+1p=3k+1 hoặc p=3k+2
Với p=3k+1p=3k+1 thì: p+8=3k+9⋮3p+8=3k+9⋮3 là hợp số (loại)
CM tương tự với p=3k+2p=3k+2.
Kết luận: p=3p=3 thì p,p+2;p+8;4p2+1p,p+2;p+8;4p2+1 cùng là số nguyên tố
có : p là số nguyên tố lớn hơn 5 => 4p ko chia hết cho 3 (1)
2p+1 số nguyên tố lớn hơn 5 => 2(2p+1) ko chia hết cho 3
=> 4p+2 ko chia hết cho 3 (2)
lại có : 4p ; 4p+1 ' 4p+2 là 3 số tự nhiên liên tiếp nên luôn tồn tại 1 số chia hết cho 3 (3)
từ (1),(2),(3)=> 4p+1 lchia hết cho 3
=> 4p+1 là hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì $$ chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó $$ chia hết cho 3.
Vậy 4p+1 là hợp số,
p>(=)5=>p có dạng 3k+1;3k+2
xét p=3k+1=>2p+1=2(3k+1)+1=3.2k+2+1=3.(2k+1) chia hết cho 3
=>2p+1 là hợp số(trái đề bài)
=>p=3k+2
=>4p+1=4(3k+2)+1=3.4k+8+1=3.4k+9=3(4k+3) chia hết cho 3
=>4p+1 là hợp số
vậy 4p+1 là hợp số
\(p=7\Rightarrow2p+1=15\)(là hợp số)
\(p=11\Rightarrow\hept{\begin{cases}2p+1=23\\4p+1=45\left(hopso\right)\end{cases}}\)(hopso=hợp số)
Với p>11 mà p nguyên tố \(\Rightarrow p=11k+1;11k+2;....;11k+10\)
Với \(p=11k+5\)
\(\Rightarrow p=2\left(11k+5\right)+1=22k+11⋮11\)
Mà 22k+11>11=>2p+1 là hợp số
Bạn xét tiếp với \(=11k+1;..;11k+4;11k+6;...;11k+10\)vào 4p+1 để xem nó là hợp số hay nguyên tố
Kết luân: To be continue