Cho tam giac MAB. Ve (O) duong kinh AB, cat MA o C, cat MB o D. Ke AP vuong CD, BQ vuong CD. Goi giao diem cua AD voi BC la H. CMR:
a) CP=DQ
b) PD.DQ=AP.BQ va QC.CP=PD.QD
c) MH vuong AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi N là trung điểm của PQ => PN = NQ (ĐN trung điểm)
Vì AP \(\perp\) CD, BQ \(\perp\) CD (gt)
=> AP // BQ (qhệ \(\perp\) đến //)
=> APQB là hình thang (dhnb)
Xét hình thang APQB có:
N là trung điểm PQ (cách vẽ)
O là trung điểm AB (O là tâm đường tròn đường kính AB)
=> ON là đường trung bình hình thang APQB (ĐN đường TB hthang)
=> ON // AP (t/c đường TB hthang)
mà AP \(\perp\) CD (gt)
do đó ON \(\perp\) CD (qhệ \(\perp\) đến //)
Xét (O) có: ON \(\perp\) CD (cmt)
=> N là trung điểm CD (qhệ \(\perp\) giữa đường kình và dây cung)
=> CN = ND (ĐN trung điểm) mà PN = NQ (cmt)
=> PN - NC = NQ - ND
=> CP = DQ