(x-3)^6-1/1/3=62/1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x\cdot\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{15}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2x\)
\(\Leftrightarrow2x=\dfrac{1}{64}\)
hay \(x=\dfrac{1}{128}\)
a, \(\dfrac{62}{7}.x=\dfrac{29}{90}.\dfrac{3}{56}\)
\(\dfrac{62}{7}.x=\dfrac{29}{1680}\)
\(x=\dfrac{29}{1680}:\dfrac{62}{7}\)
\(x=\dfrac{29}{14880}\)
b, \(\dfrac{1}{5}:x=\dfrac{1}{5}-\dfrac{1}{7}\)
\(\dfrac{1}{5}:x=\dfrac{2}{35}\)
\(x=\dfrac{1}{5}:\dfrac{2}{35}\)
\(x=\dfrac{7}{2}\)
c, \(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(\dfrac{13}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\dfrac{23}{12}=\dfrac{7}{46}\)
\(\left(x+\dfrac{-1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\)
\(\left(x+\dfrac{-1}{12}\right)=\dfrac{7}{46}.\dfrac{23}{12}\)
\(x+\dfrac{-1}{12}=\dfrac{7}{24}\)
\(x=\dfrac{7}{24}-\dfrac{-1}{12}\)
\(x=\dfrac{3}{8}\)
\(\left(x-3\right)^6-\frac{1}{\frac{1}{3}}=\frac{62}{\frac{1}{3}}\)
\(\left(x-3\right)^6=\frac{62}{\frac{1}{3}}+\frac{1}{\frac{1}{3}}\)
\(\left(x-3\right)^6=62:\frac{1}{3}+1:\frac{1}{3}\)
\(\left(x-3\right)^6=\left(62+1\right):\frac{1}{3}\)
\(\left(x-3\right)^6=63.\frac{1}{3}\)
\(\left(x-3\right)^6=\frac{63}{3}\)
\(\left(x-3\right)^6=21\)
\(\Rightarrow x-3\in\varnothing\)
\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
\(\frac{1}{4}.\frac{2}{6}............\frac{31}{64}=2^x\)
\(\Rightarrow\frac{1.2........31}{2.2.2.3...........2.31.64}=2^x\)
\(\Rightarrow\frac{1}{2^{30}.2^4}=2^x\)
\(\Rightarrow\frac{1}{2^{34}}=2^x\)
\(\Rightarrow x=-34\)
Ta có: \(2^x=\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{12}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}\)
\(\Leftrightarrow2^x=\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot31}{2\cdot\left(2\cdot3\cdot4\cdot...\cdot31\right)\cdot64}\)
\(\Leftrightarrow2^x=\dfrac{1}{2}\cdot\dfrac{1}{64}=\dfrac{1}{128}\)
\(\Leftrightarrow2^x=\dfrac{1}{2^6}\)
\(\Leftrightarrow2^{x+6}=1\)
\(\Leftrightarrow x+6=0\)
hay x=-6
Vậy: x=-6
`1/4 . 2/6 . 3/8 ... . 30/62 .31/64 =2^x`
`-> (1.2.3....30.31)/(4.6.8....62.64)=2^x`
`-> (1.(2.3...31))/(2.(2.3.4...31).32)=2^x`
`-> 1/(2.32)=2^x`
`-> 1/64=2^x`
`-> 1/(2^6)=2^x`
`-> x=-6`.