1 tính nhanh
1/5 +25% +80% -0,25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5}+25\%+80\%-0,25\%\)
\(=\frac{1}{5}+\frac{1}{4}+\frac{4}{5}-\frac{1}{400}\)
\(=\left(\frac{1}{5}+\frac{4}{5}\right)+\left(\frac{1}{4}-\frac{1}{400}\right)\)
\(=\frac{5}{5}+\left(\frac{100}{400}-\frac{1}{400}\right)\)
\(=1+\frac{99}{400}\)
\(=\frac{400}{400}+\frac{99}{400}\)
\(=\frac{499}{400}\)
tính nhanh
1/5 + 25% +80%- 0,25%
Giải:Ta có:\(\frac{1}{5}+25\%+80\%-0,25\%\)
\(=\frac{1}{5}+\frac{1}{4}+\frac{4}{5}+\frac{1}{400}\)
\(=\left(\frac{1}{5}+\frac{4}{5}\right)+\left(\frac{1}{4}+\frac{1}{400}\right)\)
\(=1+\frac{100+1}{400}=1+\frac{101}{400}=\frac{501}{400}\)
2:
=1-1+1-1=0
3:
a: =>34*(100+1)/2:a=17
=>a=101
b: =>5/3(x-1/2)=5/4
=>x-1/2=5/4:5/3=3/4
=>x=5/4
1a, \(\dfrac{2005}{2001}\) = 1+\(\dfrac{4}{2001}\); \(\dfrac{2009}{2005}\)=1+\(\dfrac{4}{2005}\)vì\(\dfrac{4}{2001}\)>\(\dfrac{4}{2005}\)nên\(\dfrac{2005}{2001}\)>\(\dfrac{2009}{2005}\)
1b,\(\dfrac{1313}{1515}\)=\(\dfrac{1313:101}{1515:101}\)= \(\dfrac{13}{15}\); \(\dfrac{131313}{151515}\)=\(\dfrac{131313:10101}{151515:10101}\)=\(\dfrac{13}{15}\)
Vậy \(\dfrac{13}{15}\)=\(\dfrac{1313}{1515}\)=\(\dfrac{131313}{151515}\)
\(9,65\times0,4\times2,5\)
\(=9,65\times\left(0,4\times2,5\right)\)
\(=9,65\times1\)
\(=9,65\)
0,25 x 40 x 9,84
= 10 x 9,84
= 98,4
7,38 x 1,25 x 80
= 7,38 x 100
= 738
344,3 x 5 x 0,4
= 344,3 x 2
= 688,6
9,65 x 0,4 x 2,5
= 9,65 x (0,4 x 2,5)
= 9,65 x 1
= 9,65
0,25 x 40 x 9,84
= 10 x 9,84
= 98,4
7,38 x 1,25 x 80
= 7,38 x (1,25 x 80)
= 7,38 x 100
= 738
344,3 x 5 x 0,4
= 344,3 x (5 x 0,4)
= 344,3 x 2
= 688,6
Đặt A=1x3+3x5+5x7+7x9+...+99x101
6A=6x(1x3+3x5+5x7+7x9+...+99x101)
6A=1x3x6+3x5x6+5x7x6+7x9x6+...+99x101x6
6A=1x3x(5+1)+3x5x(7-1)+5x7x(9-3)+7x9x(11-5)+...+99x101x(103-97)
6A=1x3x5+1x3+3x5x7-3x5+5x7x9-3x5x7+7x9x11-5x7x9+...+99x101x103-99x101x97
6A=3+99x101x103
=>A=\(\frac{\text{3+99x101x103}}{6}\)
\(\dfrac{1}{3}\left(\dfrac{2}{7}+\dfrac{4}{7}+\dfrac{1}{7}\right)=\dfrac{1}{3}\times1=\dfrac{1}{3}\)
Ta có: \(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\)
\(=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{98\cdot99}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}\)
\(=\dfrac{32}{99}\)
Giải:
1/12+1/20+1/30+...+1/9702
=1/3.4+1/4.5+1/5.6+...+1/98.99
=1/3-1/4+1/4-1/5+1/5-1/6+...+1/98-1/99
=1/3-1/99
=32/99
Chúc bạn học tốt!
1/5+25%+80%-0,25=1/5+1/4+4/5-1/4
=1-0=1
\(\frac{1}{5}+25\%+80\%-0,25\)
\(=\frac{1}{5}+\frac{25}{100}+\frac{80}{100}-0,25\)
\(=\frac{1}{5}+\frac{1}{4}+\frac{4}{5}-0,25\)
\(=1-0,25\)
\(=\frac{1}{4}+0,75\)
\(=1\)