K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

Bài 1:

Q = A.B = \(\dfrac{x-3}{x+1}\).\(\left(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\right)\)

= \(\dfrac{x-3}{x+1}\).\(\dfrac{x+3}{x-3}\)=\(\dfrac{x+3}{x+1}\)

= \(\dfrac{x+1+2}{x+1}=\dfrac{x+1}{x+1}+\dfrac{2}{x+1}=1+\dfrac{2}{x+1}\)

Để biểu thức Q có giá trị là một số nguyên thì \(\dfrac{2}{x+1}\)nguyên

=> x+1 \(\in\) Ư(2)

Mà Ư(2) = { -1;1;2;-2}

Ta có bảng:

x+1 1 -1 2 -2
x 0 -2 1 -3

Điều kiện xác định của biểu thức Q là x ≠ -1,3,-3

Vậy x ∈ { 0;-2;1;-3}

16 tháng 12 2022

Bài 2:

\(P=\left(\dfrac{\left(2x-1\right)\left(x-3\right)+x\left(x+3\right)-3+10x}{\left(x-3\right)\left(x+3\right)}\right)\cdot\dfrac{x-3}{x+2}\)

\(=\dfrac{2x^2-7x+3+x^2+3x-3+10x}{x+3}\cdot\dfrac{1}{x+2}\)

\(=\dfrac{3x^2+6x}{x+3}\cdot\dfrac{1}{x+2}=\dfrac{3x}{x+3}\)

Để P nguyên dương thì \(\left\{{}\begin{matrix}3x+9-9⋮x+3\\\dfrac{x}{x+3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3\in\left\{1;-1;3;-3;9;-9\right\}\\\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x\in\left\{-4;-6;6;-12\right\}\)

5 tháng 6 2023

\(3\dfrac{1}{2}+4\dfrac{5}{7}-5\dfrac{5}{14}\)

\(\dfrac{7}{2}+\dfrac{33}{7}-\dfrac{75}{14}\)

\(\dfrac{49}{14}+\dfrac{66}{14}-\dfrac{75}{14}\)

\(\dfrac{40}{14}=\dfrac{20}{7}\)

\(4\dfrac{1}{2}+\dfrac{1}{2}\div5\dfrac{1}{2}\)

=\(\dfrac{9}{2}+\dfrac{1}{2}\div\dfrac{11}{2}\)

=\(\dfrac{9}{2}+\dfrac{1}{2}\times\dfrac{2}{11}\)

=\(\dfrac{9}{2}+\dfrac{1}{11}\)

=\(\dfrac{101}{22}\)

\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)

\(x\times\dfrac{10}{3}=\dfrac{10}{3}\div\dfrac{17}{4}\)

\(x\times\dfrac{10}{3}=\dfrac{10}{3}\times\dfrac{4}{17}\)

\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)

\(x=\dfrac{40}{51}\div\dfrac{10}{3}\)

\(x=\dfrac{40}{51}\times\dfrac{3}{10}\)

\(x=\dfrac{120}{510}=\dfrac{12}{51}=\dfrac{4}{7}\)

\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)

\(\dfrac{17}{3}\div x=\dfrac{11}{3}-\dfrac{5}{2}\)

\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)

\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)

\(x=\dfrac{17}{3}\times\dfrac{6}{7}\)

\(x=\dfrac{102}{21}=\dfrac{34}{7}\)

Bài 1: 

b) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\left(x-3\right)^2=100\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)

Vậy: \(x\in\left\{13;-7\right\}\)

17 tháng 2 2021

ĐKXĐ: \(a\ne1\)

a. \(\dfrac{3a^2-a+3}{a^3-1}+\dfrac{1-a}{a^2+a+1}+\dfrac{2}{1-a}\)

\(=\dfrac{3a^2-a+3+\left(1-a\right).\left(a-1\right)-2.\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{3a^2-a+3-a^2+2a-1-2a^2-2a-2}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{-a+1}{\left(a-1\right).\left(a^2+a+1\right)}\)

\(=-\dfrac{1}{a^2+a+1}\)

a) Ta có: \(\dfrac{3a^2-a+3}{a^3-1}+\dfrac{1-a}{a^2+a+1}+\dfrac{2}{1-a}\)

\(=\dfrac{3a^2-a+3}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{2\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{3a^2-a+3-\left(a^2-2a+1\right)-2a^2-2a-2}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{a^2-3a+1-a^2+2a-1}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{-a}{\left(a-1\right)\left(a^2+a+1\right)}\)

b) Ta có: \(x-\dfrac{xy}{x+y}-\dfrac{x^3}{x^2y^2}\)

\(=x-\dfrac{xy}{x+y}-\dfrac{x}{y^2}\)

\(=\dfrac{xy^2\cdot\left(x+y\right)}{y^2\cdot\left(x+y\right)}+\dfrac{y^2\cdot xy}{y^2\cdot\left(x+y\right)}-\dfrac{x\cdot\left(x+y\right)}{y^2\cdot\left(x+y\right)}\)

\(=\dfrac{x^2y^2+xy^3+xy^3-x^2-xy}{y^2\cdot\left(x+y\right)}\)

\(=\dfrac{x^2y^2+2xy^3-x^2-xy}{y^2\cdot\left(x+y\right)}\)

 

5 tháng 9 2021

a, \(\left|2x-3\right|-\dfrac{1}{3}=0\Leftrightarrow\left|2x-3\right|=\dfrac{1}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=\dfrac{1}{3}\\2x-3=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

b, tương tự 

c, \(\left|2x-1\right|-\left|x+\dfrac{1}{3}\right|=0\Leftrightarrow\left|2x-1\right|=\left|x+\dfrac{1}{3}\right|\)

TH1 : \(2x-1=x+\dfrac{1}{3}\Leftrightarrow x=\dfrac{4}{3}\)

TH2 : \(2x-1=-x-\dfrac{1}{3}\Leftrightarrow3x=\dfrac{2}{3}\Leftrightarrow x=\dfrac{2}{9}\)

d, \(3x-\left|x+15\right|=\dfrac{5}{4}\Leftrightarrow\left|x+15\right|=3x-\dfrac{5}{4}\)ĐK : x >= 5/12

TH1 : \(x+15=3x-\dfrac{5}{4}\Leftrightarrow-2x=-\dfrac{65}{4}\Leftrightarrow x=\dfrac{65}{8}\)( tm )

TH2 : \(x+15=\dfrac{5}{3}-3x\Leftrightarrow4x=-\dfrac{40}{3}\Leftrightarrow x=-\dfrac{10}{3}\)

5 tháng 9 2021

TH2 x = -10/3 ( ktm ) nhé

29 tháng 12 2021

Bài 1:

\(a,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\\ b,Sửa:\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\\ =\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}=\dfrac{x^2+3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-3x\left(x+3\right)}{x^2-3x+9}\\ =\dfrac{-3}{x-3}\)

Bài  2:

\(a,\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^3+x^2+x+a=\left(x+1\right)\cdot a\left(x\right)\\ \text{Thay }x=-1\Leftrightarrow-1+1-1+a=0\Leftrightarrow a=1\)

`@` `\text {Ans}`

`\downarrow`

`a)`

\(\dfrac{3}{2}\times\dfrac{4}{5}-x=\dfrac{2}{3}\)

\(\dfrac{6}{5}-x=\dfrac{2}{3}\)

\(x=\dfrac{6}{5}-\dfrac{2}{3}\)

\(x=\dfrac{18}{15}-\dfrac{10}{15}\)

\(x=\dfrac{8}{15}\)

Vậy, `x =`\(\dfrac{8}{15}\)

`b)`

\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)

\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)

\(x=\dfrac{40}{51}\div\dfrac{10}{3}\)

\(x=\dfrac{4}{17}\)

Vậy, \(x=\dfrac{4}{17}\)

`c)`

\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)

\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)

\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)

\(x=\dfrac{34}{7}\)

Vậy, `x = `\(\dfrac{34}{7}\)

13 tháng 7 2023

a) \(\dfrac{3}{2}x\dfrac{4}{5}-x=\dfrac{2}{3}\Rightarrow\dfrac{6}{5}-x=\dfrac{2}{3}\Rightarrow x=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{18}{15}-\dfrac{10}{15}=\dfrac{8}{15}\)

b) \(x.3\dfrac{1}{3}=3\dfrac{1}{3}:4\dfrac{1}{4}\Rightarrow\dfrac{10}{3}.x=\dfrac{10}{3}:\dfrac{17}{4}\Rightarrow\dfrac{10}{3}.x=\dfrac{10}{3}.\dfrac{4}{17}\Rightarrow x=\dfrac{10}{3}.\dfrac{4}{17}:\dfrac{10}{3}=\dfrac{10}{3}.\dfrac{4}{17}.\dfrac{3}{10}=\dfrac{4}{17}\)

c) \(5\dfrac{2}{3}:x=3\dfrac{2}{3}-2\dfrac{1}{2}\Rightarrow\dfrac{17}{3}:x=\dfrac{11}{3}-\dfrac{5}{2}\Rightarrow\dfrac{17}{3}:x=\dfrac{22}{6}-\dfrac{15}{6}\Rightarrow\dfrac{17}{3}:x=\dfrac{7}{6}\Rightarrow x=\dfrac{17}{3}:\dfrac{7}{6}=\dfrac{17}{3}.\dfrac{7}{6}=\dfrac{119}{18}\)

5 tháng 2 2022

a. ĐKXĐ: \(x\ne2\).

 \(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)

\(\dfrac{1}{x-2}+\dfrac{3x-6}{x-2}=\dfrac{3-x}{x-2}\)

\(1+3x-6=3-x\)

\(4x-8=0\)

\(x=2\) (không thỏa mãn)

-Vậy S=∅.

b. ĐKXĐ: \(x\ne-1\)

 \(\dfrac{5x}{2x+2}+1=-\dfrac{6}{x+1}\)

\(\dfrac{5x}{2\left(x+1\right)}+1=-\dfrac{6}{x+1}\)

\(\dfrac{5x}{2\left(x+1\right)}+\dfrac{2\left(x+1\right)}{2\left(x+1\right)}=-\dfrac{12}{2\left(x+1\right)}\)

\(5x+2\left(x+1\right)=-12\)

\(5x+2x+2+12=0\)

\(7x+14=0\)

\(x=-2\) (thỏa mãn).

-Vậy \(S=\left\{-2\right\}\)

5 tháng 2 2022

a, \(\Leftrightarrow\dfrac{1}{x-2}+\dfrac{3.\left(x-2\right)}{x-2}=\dfrac{3-x}{x-2}\\ \Leftrightarrow1+3x-6=3-x\)

\(\Leftrightarrow3x+x=3-1+6\\ \Leftrightarrow4x=8\\ \Leftrightarrow x=\dfrac{8}{4}=2\\ Vậy.S=\left\{2\right\}\)

b,  \(\Leftrightarrow\)\(\dfrac{5x}{2x+2}+\dfrac{2x+2}{2x+2}=\dfrac{-6.2}{2.\left(x+1\right)}\)

\(\Leftrightarrow5x+2x+2=-12\\ \Leftrightarrow7x=-12-2\\ \Leftrightarrow7x=-14\\ \Leftrightarrow x=-\dfrac{14}{7}=-2\\ Vậy.S=\left\{-2\right\}\)

11 tháng 9 2023

Bài 4: 

a) \(\dfrac{4}{3}+\left(1,25-x\right)=2,25\)

\(1,25-x=2,25-\dfrac{4}{3}=\dfrac{9}{4}-\dfrac{4}{3}\)

\(1,25-x=\dfrac{11}{12}\)

\(x=1,25-\dfrac{11}{12}=\dfrac{5}{4}-\dfrac{11}{12}\)

\(x=\dfrac{1}{3}\)

b) \(\dfrac{17}{6}-\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(x-\dfrac{7}{6}=\dfrac{17}{6}-\dfrac{7}{4}=\dfrac{34}{12}-\dfrac{21}{12}\)

\(x-\dfrac{7}{6}=\dfrac{13}{12}\)

\(x=\dfrac{13}{12}+\dfrac{7}{6}=\dfrac{13}{12}+\dfrac{14}{12}\)

\(x=\dfrac{27}{12}=\dfrac{9}{4}\)

c) \(4-\left(2x+1\right)=3-\dfrac{1}{3}=\dfrac{9}{3}-\dfrac{1}{3}\)

\(4-\left(2x+1\right)=\dfrac{8}{3}\)

\(2x+1=\dfrac{8}{3}+4=\dfrac{8}{3}+\dfrac{12}{3}\)

\(2x+1=\dfrac{20}{3}\)

\(2x=\dfrac{20}{3}-1=\dfrac{20}{3}-\dfrac{3}{3}\)

\(2x=\dfrac{17}{3}\)

\(x=\dfrac{17}{3}.\dfrac{1}{2}=\dfrac{17}{6}\)

Bài 15:

a) \(\left(\dfrac{-2}{3}\right)^9:x=\dfrac{-2}{3}\)

\(x=\left(\dfrac{-2}{3}\right)^9:\dfrac{-2}{3}=\left(\dfrac{-2}{3}\right)^{9-1}\)

\(=>x=\left(\dfrac{-2}{3}\right)^8\)

b) \(x:\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^4\)

\(x=\left(\dfrac{4}{9}\right)^4.\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^{4+5}\)

\(=>x=\left(\dfrac{4}{9}\right)^9\)

c) \(\left(x+4\right)^3=-125\)

\(\left(x+4\right)^3=\left(-5\right)^3\)

\(=>x+4=-5\)

\(x=-5-4\)

\(=>x=-9\)

d) \(\left(10-5x\right)^3=64\)

\(\left(10-5x\right)^3=4^3\)

\(=>10-5x=4\)

\(5x=10-4\)

\(5x=6\)

\(=>x=\dfrac{6}{5}\)

e) \(\left(4x+5\right)^2=81\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(4x+5\right)^2=\left(-9\right)^2\\\left(4x+5\right)^2=9^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+5=-9\\4x+5=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=-14\\4x=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14}{4}\\x=1\end{matrix}\right.\)

Bài 16:

a) \(4-1\dfrac{2}{5}-\dfrac{8}{3}\)

\(=4-\dfrac{7}{5}-\dfrac{8}{3}\)

\(=\dfrac{60-21-40}{15}=\dfrac{-1}{15}\)

b) \(-0,6-\dfrac{-4}{9}-\dfrac{16}{15}\)

\(=\dfrac{-3}{5}+\dfrac{4}{9}-\dfrac{16}{15}\)

\(=\dfrac{\left(-27\right)+20-48}{45}=\dfrac{-55}{45}=\dfrac{-11}{9}\)

c) \(-\dfrac{15}{4}.\left(\dfrac{-7}{15}\right).\left(-2\dfrac{2}{5}\right)\)

\(=\dfrac{7}{4}.\dfrac{-12}{5}\)

\(=\dfrac{-21}{5}\)

\(#Wendy.Dang\)

 

 

11 tháng 9 2023

Uh, chừa sau k dám học muộn nx