K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2020

Nhân hai vế của phương trình với 6xy:
                   6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
      x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37 
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử xy⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
               {−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số:  (43;7),(7;43)
 

\(x;y\in N^{\cdot}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}\le1\\\frac{1}{y}\le1\end{cases}}\)

\(\Leftrightarrow z=\frac{1}{x}+\frac{1}{y}\le2\)

\(z=2\Leftrightarrow x=y=1\)( dấu = xảy ra)

\(+z=1\Leftrightarrow1=\frac{1}{x}+\frac{1}{y}.\)

    Nếu x = y => 2/x  =1 => x =y =2

    Nếu  g/s  x > y => 1 = 1/x +1/y  < 2/y =>y < 2 

        => y =1  => 1/x  =0 ( vô lí ) 

Vậy x =y =2; z =1 hoặc x = y =1 ; z =2

10 tháng 2 2017

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

Do vai trò của x,y,z là như nhau nên không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\)(nguyên dương)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}.\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}.\)

\(\Rightarrow z\le1\) mà    \(z\ge1\)

\(\Rightarrow z=1.\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=2-\frac{1}{1}=1\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}.\)

\(\Rightarrow y\le2\)mà   \(y\ge1\)

\(\Rightarrow y\in\left\{1;2\right\}.\)

*Nếu \(y=1\Rightarrow\frac{1}{x}=1-\frac{1}{1}=0\Rightarrow x=\frac{1}{0}\)(vô lí)

*Nếu \(y=2\Rightarrow\frac{1}{x}=2-\frac{1}{2}=\frac{1}{2}\Rightarrow x=2\)(thỏa mãn)

Vậy \(x=y=2,z=1.\)

26 tháng 4 2017

Do vai trò của x,y,z là như nhau nen giả sử z ≥ y ≥ x ≥ 1 

Ta sẽ thử trực tiếp một vài trường hợp: 

Nếu x = 1 thì 1/y + 1/z = 0 ( vô nghiệm) 

Nếu x = 2 thì 1/y + 1/z = 1/2 <=> 2y + 2z = yz <=> (y - 2)(z - 2) = 4 

Mà :0 ≤ y - 2 ≤ z - 2 và (y- 2), (z - 2) phải là ước của 4 

Do đó ta có các trường hợp: 

{ y - 2 = 1```````{ y = 3 
{ z - 2 = 4 <=>{ z = 6 

{ y- 2 = 2````````{ y = 4 
{ z - 2 = 2 <=>{ z = 4 

Nếu x = 3 thì 1/y + 1/z = 2/3 

+ Nếu y = 3 thì z = 3 

+ Nều y ≥ 4 thì 1/y + 1/z ≤ 1/4 + 1/4 = 1/2 < 1/3 

=> phương trình vô nghiệm 

Nếu x = 4 thì 1/x + 1/y + 1/z ≤ 1/4 + 1/4 + 1/4 = 3/4 < 1 

=>pt vô nghiệm 

Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin avt1536386_60by60.jpgWrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

30 tháng 12 2018

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

9 tháng 2 2017

Do vai trò của \(x,\)\(y,\)\(z\) là như nhau nên giả sử \(z\ge y\ge x\ge1.\)
Ta sẽ thử trực tiếp một vài trường hợp: 
     \(-\) Nếu \(x=1\) thì \(\frac{1}{y}+\frac{1}{z}=0\) ( vô nghiệm) 
     \(-\) Nếu \(x=2\) thì \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\) \(\Leftrightarrow\)\(2y+2z=yz\) \(\Leftrightarrow\)  \(\left(y-2\right)\left(z-2\right)=4\)
       Mà \(0\le y-2\le z-2\)\(4⋮\left(y-2\right),\) \(4⋮\left(z-2\right)\)
Do đó ta có các trường hợp: \(\hept{\begin{cases}y-2=1\rightarrow y=3\\z-2=4\rightarrow z=6\end{cases}}\)
                                           \(\hept{\begin{cases}y-2=2\rightarrow y=4\\z-2=2\rightarrow z=4\end{cases}}\)

     \(-\) Nếu \(x=3\) thì  \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)       + Nếu \(y=3\) thì \(z=3\)
                                                                              + Nều \(y\ge4\) thì \(\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)
                                                                                \(\Rightarrow\) phương trình vô nghiệm 
     \(-\)Nếu \(x=4\) thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}< 1\)   \(\Rightarrow\) phương trình vô nghiệm 

         Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)

9 tháng 2 2017

Không mất tính tổng quát ta giả sử

\(x\ge y\ge z>0\)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\)

\(\Rightarrow1=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}\)

\(\Rightarrow z\le3\)

\(\Rightarrow z=1;2;3\)

*Với z = 1 thì 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=0\)(sai vì x, y nguyên dương)

*Với z = 2 thì

\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Rightarrow y\le4\)

\(\Rightarrow y=1;2;3;4\)

+Với y = 1

\(\Rightarrow\frac{1}{x}=-\frac{1}{2}\)(loại)

+Với y = 2 thì

\(\Rightarrow\frac{1}{x}=0\)(loại)

+Với y = 3 thì

\(\frac{1}{x}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Rightarrow x=6\)

+Với y = 4 thì

\(\frac{1}{x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)

\(\Rightarrow x=4\)

*Với z = 3 thì

\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{3}=\frac{2}{3}\)

\(\Rightarrow\frac{2}{3}\le\frac{2}{y}\)

\(\Rightarrow y\le3\)

\(\Rightarrow y=1;2;3\)

+ Với y = 1 thì

\(\frac{1}{x}=\frac{2}{3}-1=-\frac{1}{3}\)(loại)

+ Với y = 2 thì

\(\frac{1}{x}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)

\(\Rightarrow x=6\)

+ Với y = 3 thì

\(\frac{1}{x}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)

\(\Rightarrow x=3\)

Tới đây thì bạn tự kết luận nhé