K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

Đề yêu cầu chứng minh hay tìm x vậy bạn ?

Bổ sung đề nhanh nhé !

mình làm cho !

1 tháng 1 2019

Tìm x nha bạn à mình làm được luôn r nếu bạn muốn thì bạn cứ làm mình tích cho 

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ:...
Đọc tiếp

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ: ...

\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)

\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)

\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)

1
23 tháng 5 2019

hỏi j v

12 tháng 8 2020

Ta có: \(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)     (   ĐKXĐ: \(x>0,\)\(x\ne0,\)\(x\ne1\))

    \(\Leftrightarrow A=\left(\frac{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right).\left(x-\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\right)\)

    \(\Leftrightarrow A=\left(\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+1}\right)\)

    \(\Leftrightarrow A=\left(\frac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\right).\left(\frac{\sqrt{x}+1}{2.\left(\sqrt{x}-1\right)}\right)\)

    \(\Leftrightarrow A=\left(\frac{2\sqrt{x}}{\sqrt{x}}\right).\left(\frac{\sqrt{x}+1}{2.\left(\sqrt{x}-1\right)}\right)\)

    \(\Leftrightarrow A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

Để \(A\ge\frac{3}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\ge\frac{3}{2}\)

Ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\ge\frac{3}{2}\)

    \(\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{3}{2}\ge0\)

    \(\Leftrightarrow\frac{2\sqrt{x}+2-3\sqrt{x}+3}{2.\left(\sqrt{x}-1\right)}\ge0\)

    \(\Leftrightarrow\frac{5-\sqrt{x}}{2.\left(\sqrt{x}-1\right)}\ge0\)

+ TH1\(\hept{\begin{cases}5-\sqrt{x}\ge0\\2\sqrt{x}-2\ge0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\sqrt{x}\le5\\\sqrt{x}\ge1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x\le25\\x\ge1\end{cases}}\)\(\Rightarrow\)\(1\le x\le25\)\(\left(TM\right)\)

+ TH2\(\hept{\begin{cases}5-\sqrt{x}\le0\\2\sqrt{x}-2\le0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\sqrt{x}\ge5\\\sqrt{x}\le1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x\ge25\\x\le1\end{cases}}\)\(\left(L\right)\)

            \(\Rightarrow\)\(1\le x\le25.\)Kết hợp ĐKXĐ: \(x\ne1\)

                         \(\Rightarrow\)\(1< x\le25\)

Vậy để \(A\ge\frac{3}{2}\)\(\Leftrightarrow\)\(1< x\le25\)

22 tháng 6 2018

giup to voi

22 tháng 6 2018

1. Với x khác 0; 1 ta có: 

\(P=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(P=\frac{\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\frac{-x+x\sqrt{x}+6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{x-\sqrt{x}-x+x\sqrt{x}+6-x-3\sqrt{x}-2}{\left(\sqrt{x+2}\right)\left(\sqrt{x}-1\right)}\)

\(P=\frac{x\sqrt{x}-x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(P=\sqrt{x}-2\)

NV
6 tháng 3 2019

ĐKXĐ: \(x>0;x\ne1\)

\(B=\left(\frac{\sqrt{x}-1+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\left(\frac{\sqrt{x}-1}{\sqrt{x}}\right)\)

\(B=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)}{\sqrt{x}}\)

\(B=\frac{2}{\sqrt{x}+1}\)

\(B\ge\frac{1}{2}\Rightarrow\frac{2}{\sqrt{x}+1}\ge\frac{1}{2}\Rightarrow\sqrt{x}+1\le4\)

\(\Rightarrow\sqrt{x}\le3\Rightarrow x\le9\)

\(x\in N\Rightarrow x=\left\{2;3;4;5;6;7;8;9\right\}\)

2 tháng 7 2019

\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)

\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)

\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)

\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)

2 tháng 7 2019

\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé 

\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

1 tháng 3 2018

\(\frac{18\sqrt{2}}{3}=6\sqrt{2}\)

đặt mẫu số = Pain

áp dụng BDT cô si shaw ta có

\(\frac{1}{\sqrt{x\left(y+z\right)}}+\frac{1}{\sqrt{y\left(z+x\right)}}+\frac{1}{\sqrt{z\left(x+y\right)}}\ge\frac{9}{Pain}\)

áp dụng BDT cô si ta có ( thêm 2)

\(\sqrt{2x\left(y+z\right)}\le\frac{\left(2x+y+z\right)}{2}\)

\(\sqrt{2y\left(z+x\right)}\le\frac{\left(2y+z+x\right)}{2}\)

\(\sqrt{2z\left(x+y\right)}\le\frac{\left(2z+x+y\right)}{2}\)

+ lại và rút cái căn 2 ở VT và Tính VP ta được

\(\sqrt{2}\left(Pain\right)\le\frac{4}{2}\left(x+y+z\right)\) (x+y+z=18 căn 2)

\(\sqrt{2}\left(Pain\right)\le2\left(18.\sqrt{2}\right)\)  ( rút gọn căn 2 với căn 2 )

\(Pain\le36\)

vì Pain năm ở dưới mẫu suy ra  dấu \(\le\) thành dấu \(\ge\)

thay vào ta được

\(\frac{9}{Pain}\ge\frac{9}{36}=\frac{1}{4}\)

28 tháng 2 2018

NHANH LÊN NHÉ MÌNH CẦN GẤP!!!!!