K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

bài lớp 9 sao lạ thế bn

1 tháng 1 2019

1,Gọi pt đường thẳng đi qua A và B là (d) y = ax + b 

Vì \(A\left(1;3\right)\in\left(d\right)\Rightarrow3=a+b\left(1\right)\)

Vì \(B\left(-2;1\right)\in\left(d\right)\Rightarrow1=-2a+b\left(2\right)\)

Lấy (1) - (2) theo từng vế: 2 = 3a

                                 \(\Rightarrow a=\frac{2}{3}\)

Thay vào (1) \(\Rightarrow b=\frac{7}{3}\)

 \(\Rightarrow\left(d\right)y=\frac{2}{3}x+\frac{7}{3}\)

*Tại x = 0 => y= 7/3

=> M(0;7/3 ) thuộc trục Oy

*Tại y = 0 => x = -7/2

=> N(-7/2;0) thuộc trục Ox

Ta có: \(OM=\sqrt{\left(x_O-x_M\right)^2+\left(y_O-y_M\right)^2}=\sqrt{\left(0-0\right)^2+\left(0-\frac{7}{3}\right)^2}=\frac{7}{3}\)

          \(ON=\sqrt{\left(x_O-x_N\right)^2+\left(y_O-y_N\right)^2}=\sqrt{\left(0+\frac{7}{2}\right)^2+\left(0-0\right)^2}=\frac{7}{2}\)

Kẻ OH vuông góc với (d)

Theo hệ thức lượng

\(\frac{1}{OH^2}=\frac{1}{OM^2}+\frac{1}{ON^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{\left(\frac{7}{3}\right)^2}+\frac{1}{\left(\frac{7}{2}\right)^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{13}{49}\)

\(\Leftrightarrow OH^2=\frac{49}{13}\)

\(\Leftrightarrow OH=\frac{7}{\sqrt{13}}\)

Vậy ...........

NV
27 tháng 9 2019

a/ Gọi \(D\left(a;0\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-9;3\right)\\\overrightarrow{AD}=\left(a-6;-3\right)\end{matrix}\right.\)

Do A; B; D thẳng hàng \(\Leftrightarrow\frac{a-6}{-9}=\frac{-3}{3}\Rightarrow a=15\) \(\Rightarrow D\left(15;0\right)\)

b/ \(\overrightarrow{AB}=\left(-1;5\right);\) \(\overrightarrow{AD}=\left(-2;10\right)\)

\(\Rightarrow\overrightarrow{AD}=2\overrightarrow{AB}\Rightarrow A,B,D\) thẳng hàng

12 tháng 11 2021

giúp mình với mình đang cần gấp

 

12 tháng 11 2021

b: Thay x=-2 vào (d), ta được:

y=4+1=5

NV
22 tháng 11 2019

\(\overrightarrow{AB}=\left(6;3\right)\) ; \(\overrightarrow{AC}=\left(5;-3\right)\)

Ta có \(\frac{5}{6}\ne\frac{-3}{3}\Rightarrow\overrightarrow{AB}\)\(\overrightarrow{AC}\) ko cùng phương nên A;B;C ko thẳng hàng

\(\Rightarrow\) A;B;C là 3 đỉnh của 1 tam giác

2/ Gọi \(I\left(x;0\right)\Rightarrow\overrightarrow{AI}=\left(x+4;-1\right)\)

Để A;B;I thẳng hàng \(\Rightarrow\frac{x+4}{6}=-\frac{1}{3}\Rightarrow x+4=-2\Rightarrow x=-6\)

\(\Rightarrow I\left(-6;0\right)\)

16 tháng 8 2019

Gọi (Q) và (R) theo thứ tự là mặt phẳng trung trực của AB và BC.

Những điểm cách đều ba điểm A, B, C là giao tuyến ∆ = (Q) ∩ (R).

(Q) đi qua trung điểm E(3/2; 1/2; 1) của AB và có  n Q →  = AB (1; -3; 0) do đó phương trình của (Q) là: x - 3/2 - 3(y - 1/2) = 0 hay x - 3y = 0

(R) đi qua trung điểm F(1; 1; 1) của BC và có  n R →  =  BC →  = (-2; 4; 0) do đó phương trình (R) là: x - 2y + 1 = 0

Ta có:  n Q →   ∧   n R →  = (0; 0; -2).

Lấy D(-3; -1; 0) thuộc (Q)  ∩  (R)

Suy ra ∆ là đường thẳng đi qua D và có vectơ chỉ phương  u → (0; 0; 1)

nên có phương trình là: Giải sách bài tập Toán 12 | Giải sbt Toán 12

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có: \(\overrightarrow {AB}  = \left( {2;4} \right),\overrightarrow {AG}  = \left( {2;1} \right)\)

Do \(\overrightarrow {AB}  \ne k.\overrightarrow {AG} \) nên A, B, G không thẳng hàng

b) Giả sử C có tọa độ là: \(C\left( {{x_C};{y_C}} \right)\)

Để G là trọng tâm tam giác ABC thì: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 3{x_G} - {x_A} - {x_B}\\{y_C} = 3{y_G} - {y_A} - {y_B}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 3.1 - \left( { - 1} \right) - 1 = 3\\{y_C} = 3.2 - 1 - 5 = 0\end{array} \right.\)

Vậy tọa độ điểm C là: \(C\left( {3;0} \right)\)

7 tháng 6 2015

2 Vì O nằm trên đường thẳng xy suy ra tia Ox đối với tia Oy(*)

mà A thuộc tia Ox

B thuộc tia Oy

mà từ (*) ta có tia OA đối với tia OB suy ra điểm O nằm giữa A,B(**)

từ(**) ta có OA+OB=AB(công thức cộng đoạn thẳng )

                3cm+5cm=AB

suy ra AB=8cm

b,TH1 M nằm trên tia OA

vì tia OA là tia đối của tia OB

suy ra tia OM là tia đói của tia OB

suy ra điểm O nằm giữa diểm M,B

suy ra ta có 

OM+OB=MB(công thức cộng đoạn thẳng)

1cm+5cm=MB

suy ra MB=6cm

TH2 điểm M nằm trên tia Oy

vì trên tia Oy có điểm M,B(1)

mà OM<OB vì (1cm<5cm)(2)

suy ra diểm M nằm giữa điểm O,B(***)

từ (***) suy ra OM+MB=OB(công thức cộng góc)

1cm+MB=5cm

MB=5cm-1cm

MB=4cm

còn câu a tớ ko biết