Tìm số dư của phép chia:\(15^{15^{15}}\) cho \(49\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
gọi số bị chia là a (a \(\ne\) 0 , b>49)
ta có a=bx6+49 (1) ; a+ b+ 49 = 595 (2)
thay (1) vào (2) ta có
bx6+ 49 + b + 49 = 595
7xb+ 98 = 595
7 x b = 497
b = 497:7
b = 71
a = 595 - 49 - 71 = 475
Vậy số bị chia là 475 ; số chia là 71
2)
Gọi số bị chia, số chia, thương và số dư lần lượt là a, b, c, d. Ta có:
a : b = c ( dư d )
a = c.b+d
(a+15) : (b+5) = c (dư d)
a+15 = c.(b+5)+ d
a+15 = c.b+ c.5+ d
Mà a = c.b + d nên:
a+15 = c.b+ c.5 + d
=c.b+ d + 15 = c.b+c.5+d
15 = c.5
c = 15 : 5 = 3
p:15 dư 7 và chia 6 dư4
=>p+8 sẽ chia hết cho 15 và 6
=>p+8=BC(15;6)
BCNN(15;6)=30
=>p+8=30*(k thuộc N*)
=>p chia 30 sẽ dư 22(30-8=22)
=>Số dư của phép chia đó là 22
a, Tổng các chữ số của A là (2+6)*2007 = 8*2007 = X (tự tính đi nhé ^^)
=> Số dư của A khi chia cho 9 = Số dư của X khi chia cho 9
b, A chia 5 dư 1; A chia 3 có số dư bằng X chia 3 = Y (cũng tự tính luôn nhé ^^^^)
=> Số dư của A khi chia cho 15 = 1*Y
*Đây chỉ là hướng làm thôi nhé, còn suy luận thế nào thì tự nghĩ đi :v
Học tốt nha ^^
Theo bài ra ta có:
p:15 dư 7=>p-7 chia hết cho 15=>p-7-15 chia hết cho 15 =>p-22 chia hết cho 15
p:6 dư 4=>p-4 chia hết cho 6=>p-4-18 chia hết cho 6 => p-22 chia hết cho 6
=> p-22 thuộc BC(15,6)
Mà BCNN(15,6)=30
=>BC(15,6)=B(30)
=>p-22 thuộc B(30)
=>p-22 chia hết cho 30
=>p-22 = 30k
=>p=30k+22
=> p chia 30 dư 22
(k cho mình nha!)
Vì phép chia có số dư lớn nhất có thể mà số chia là 6
=> Số dư là 5
Vậy số bị chia là : 15 x6 +5 =95
ta chú ý :
\(15^7\text{ chia 49 dư 1}\)
mà \(15^{15}=\left(14+1\right)^{15}\text{ chia 7 dư 1 nên :}15^{15}=7k+1\)
nên : \(15^{15^{15}}=15^{7k+1}=15\times15^{7k}\text{ chia 49 dư 15}\)