Cho tam giác ABC nhọn đường cao AH. trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D,E sao cho góc DBA=góc ACE=90 độ, BD=BA và CE=CA. Chứng minh các đường thẳng AH,BE.CD đồng qui
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia AH lấy điểm I sao cho AI = BC. Tia đối của tia CB là Cx
K là giao điểm của BI và CE
Ta thấy \(\widehat{ECx}=\widehat{HAC}\)(cùng phụ với \(\widehat{ACH}\))
\(\Rightarrow\widehat{IAC}=\widehat{BCE}\)(cùng kề bù với hai góc bằng nhau)
Xét \(\Delta IAC\)và \(\Delta BCE\)có:
AI = CB (theo cách chọn điểm phụ)
\(\widehat{IAC}=\widehat{BCE}\left(cmt\right)\)
AC = CE (gt)
Do đó \(\Delta IAC=\Delta BCE\left(c-g-c\right)\)
\(\Rightarrow\widehat{ICA}=\widehat{BEC}\)(hai góc tương ứng)
Mà \(\widehat{ICA}+\widehat{ICE}=90^0\left(=\widehat{ACE}\right)\)nên \(\widehat{BEC}+\widehat{ICE}=90^0\)
\(\Rightarrow\Delta CKE\)vuông tại K\(\Rightarrow\widehat{CKE}=90^0\Rightarrow BE\perp IC\)
Tương tự ta có \(CD\perp BI\)
\(\Rightarrow IH,CD,BE\)đồng quy (ba đường cao trong \(\Delta IBC\))
Mà \(IH\equiv AH\Rightarrow AH,CD,BE\)đồng quy
Vậy \(AH,CD,BE\)đồng quy (đpcm)
1)
a) Ta có: góc BAD+góc CAE+góc BAC=180 độ
Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)
Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)
Từ (1) và (2) => góc BAD= góc ACE
Xét tam giác ABD và tam giác ACE có:
góc ADB=góc AED=90 độ
AB=AC ( vì tam giác ABC vuông cân tại A)
góc BAD=góc ACE (cmt)
=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)
b) Theo câu a) Tam giác ABD=tam giác ACE
=> DA=EC và BD=AE
Mà DE=DA+AE nên DE=EC+BD