K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

A=\(\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}\)\(-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)

A=\(\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(1+x\right)\left(1-y\right)\left(x+y\right)}\)

A=\(\frac{x^2+x^3-y^2+y^3-x^2y^2\left(x+y\right)}{\left(1+x\right)\left(1-y\right)\left(x+y\right)}\)

A=\(\frac{\left(x+y\right)\left(x-y\right)+\left(x+y\right)\left(x^2-xy+y^2\right)-x^2y^2\left(x+y\right)}{\left(1+x\right)\left(1+y\right)\left(x+y\right)}\)

A=\(\frac{\left(x+y\right)\left(x-y+x^2-xy+y^2-x^2y^2\right)}{\left(x+y\right)\left(x+1\right)\left(1-y\right)}\)

A=\(\frac{x\left(x+1\right)-y\left(x+1\right)+y^2\left(1-x\right)\left(1+x\right)}{\left(x+1\right)\left(1-y\right)}\)

A=\(\frac{\left(x+1\right)\left(x-y+y^2-y^2x\right)}{\left(x+1\right)\left(1-y\right)}\)

A=\(\frac{-y\left(1-y\right)+x\left(1-y\right)\left(1+y\right)}{\left(1-y\right)}\)

A=\(\frac{\left(1-y\right)\left(-y+x+xy\right)}{1-y}\)=\(x-y+xy\)

16 tháng 8 2016

đã tắt máy chưa để cho mình giải nha

16 tháng 8 2016

Giúp mik nha mọi người :)

19 tháng 7 2023

\(1)A=2x\left(x-y\right)-y\left(y-2x\right)\)

\(=2x^2-2xy-y^2+2xy\)

\(=2x^2-y^2=2.\left(-\dfrac{2}{3}\right)^2-\left(-\dfrac{1}{3}\right)^2\)

\(=\dfrac{8}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)

\(2)B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(=5x^2-20xy-4y^2+20xy\)

\(=5x^2-4y^2=5.\left(-\dfrac{1}{5}\right)^2-4.\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{5}-1=-\dfrac{4}{5}\)

\(3)C=\text{x.(x^2-y^2)-x^2(x+y)+y(x^2-x)}\)

\(=x^3-xy^2-x^3-x^2y+x^2y-xy\)

\(=-xy\left(x+1\right)\)

19 tháng 7 2023

\(=\dfrac{1}{2}.100\left(100+1\right)=50.101=5050\)

16 tháng 8 2016

\(B=\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)

\(=\frac{x^2y-x^2z+zy^2-xy^2+z^2x-z^2y}{x^2\left(y-z\right)-y^2\left(y-z\right)}\)

\(=\frac{\left(x^2y-z^2y\right)-\left(xy^2-zy^2\right)-\left(x^2z-z^2x\right)}{\left(x^2-y^2\right)\left(y-z\right)}\)

\(=\frac{\left[y\left(x+z\right)-y^2-xz\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left(xy+zy-y^2-xz\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left[\left(xy-y^2\right)-\left(xz-zy\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left[y\left(x-y\right)-z\left(x-y\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{x-z}{x+y}\)

16 tháng 8 2016

\(A=\frac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)

\(=\frac{x^2y-y^2+x^2-y+x^2y^2-1}{x^2y+y^2+x^2+y+x^2y^2+1}\)

\(=\frac{\left(x^2y+x^2\right)+\left(x^2y^2-y^2\right)-\left(y+1\right)}{\left(x^2y+x^2\right)+\left(x^2y^2+y^2\right)+\left(y+1\right)}\)

\(=\frac{x^2\left(y+1\right)+y^2\left(x^2-1\right)-\left(y+1\right)}{x^2\left(y+1\right)+y^2\left(x^2+1\right)+\left(y+1\right)}\)

\(=\frac{\left(x^2-1\right)\left(y+1\right)+y^2\left(x^2-1\right)}{\left(x^2+1\right)\left(y+1\right)+y^2\left(x^2+1\right)}\)

\(=\frac{\left(x^2-1\right)\left(y^2+y+1\right)}{\left(x^2+1\right)\left(y^2+y+1\right)}\)

\(=\frac{x^2-1}{x^2+1}\)

\(A=\dfrac{x^2-y^2+2y^2}{y\left(x-y\right)}\cdot\dfrac{-\left(x-y\right)}{x^2+y^2}+\dfrac{2x^2+2-2x^2+x}{2\left(2x-1\right)}\cdot\dfrac{-\left(2x-1\right)}{x+2}\)

\(=\dfrac{-1}{y}+\dfrac{-1}{2}=\dfrac{-2-y}{2y}\)

5 tháng 7 2016

a) \(A=4x\left(x+y\right)-5y\left(x-y\right)-4x^2=4x^2+4xy-5xy+5y^2-4x^2=5y^2-xy\)

Với x = -5; y = 2 thì: \(A=5\cdot2^2-\left(-5\right)\cdot2=20+10=30\)

b) \(B=-3x\left(x^2+y^2\right)+2y\left(x^2-y\right)=-3x^3-3xy^2+2yx^2-2y^2=-3x^3+2x^2y-3xy^2-2y^2\)

Với x = 1; y = 2 thì: \(B=-3\cdot1^3+2\cdot1^2\cdot2-3\cdot1\cdot2^2-2\cdot2^2=-3+4-12-8=-19\)

6 tháng 5 2021

Viết các đơn thức sau dưới dạng thu gọn 

a)3x.5y2.x2

5 tháng 7 2016

\(A=4x\left(x+y\right)-5y\left(x-y\right)-4x^2\)

     \(=4x^2+4xy-5y^2-5xy-4x^2\)

      = \(\left(4x^2-4x^2\right)+\left(4xy-5xy\right)-5y^2\)

       \(=5y^2-xy\)

Thay x=-5 và y=2 vào đa thức \(5y^2-xy\) ta được:

\(5.2^2-\left(-5\right).2=20+10=30\)

Vậy 30 là giá trị của đa thức trên tại x=-5 và y=2

\(B=-3x\left(x^2+y^2\right)+2y\left(x^2-y\right)\)

    \(=-3x^3-3xy^2+2yx^2-2y^2\)

    \(=-3x^3-3xy^2+2yx^2-2y^2\)

Thay x=1 và y=2 vào đa thức \(=-3x^3-3xy^2+2yx^2-2y^2\)

\(\left(-3\right).1^3-2.1.2^2+2.2.1^2-2.2^2=-3-8+4-8=-15\)

Vậy -15 là giá trị của đa thức \(=-3x^3-3xy^2+2yx^2-2y^2\)  tại x=1 và y=2

^...^ ^_^ hihihivui