Câu 1: Chúng minh √7 là số vô tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh bằng phương pháp phản chứng :
Giả sử \(\sqrt{7}\)là một số hữu tỉ . Suy ra có thể biểu diễn dưới dạng \(\sqrt{7}=\frac{m}{n}\) (\(m,n\in Z,n\ne0\)) và \(\frac{m}{n}\)tối giản.
\(\Rightarrow7n^2=m^2\Rightarrow m^2⋮7\Rightarrow m⋮7\)(1)
Do đó, đặt m = 7k (\(k\in N\))
=> \(m^2=49k^2\Rightarrow n^2=7k^2\Rightarrow n^2⋮7\Rightarrow n⋮7\)(2)
Từ (1) và (2) Suy ra được m,n cùng chia hết cho 7
=> \(\frac{m}{n}\) chưa là phân số tối giản (vô lí vì trái với giả thiết)
Điều vô lí chứng tỏ \(\sqrt{7}\)là số vô tỉ.
giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=>7 = a²/b²
<=> a² = 7b²
=> a² ⋮7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮49
=> 7b² ⋮ 49
=> b² ⋮7
=> b ⋮7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
C/m phản chứng,giả sử √7=a/b(số hữu tỉ) rồi c/m phản giả thiết=>điều giả sử là sai
P/s:lười làm
Giả sử \(\sqrt{7}\)là số hữu tỉ \(\Rightarrow\sqrt{7}=\frac{m}{n}\)(tối giản)
Suy ra \(7=\frac{m^2}{n^2}\)hay 7n2=m2 (1)
Đẳng thức này chứng tỏ m2 chia hết 7.Mà 7 là số nguyên tố nên m chia hết 7.
Đặt m=7k (k thuộc Z),ta có m2=49k2 (2)
Từ (1) và (2) =>7n2=49k2 nên n2=7k2 (3)
Từ (3) ta lại có n2 chia hết 7 và vì 7 là số nguyên tố nên n chia hết 7
m và n cùng chia hết 7 \(\Rightarrow\frac{m}{n}\)ko tối giản,trái giả thiết.
Vậy \(\sqrt{7}\)là số vô tỉ
Chứng minh bằng phương pháp phản chứng :
Giả sử \(\sqrt{7}\)là một số hữu tỉ . Suy ra có thể biểu diễn dưới dạng \(\sqrt{7}=\frac{m}{n}\) (\(m,n\in Z,n\ne0\)) và \(\frac{m}{n}\)tối giản.
\(\Rightarrow7n^2=m^2\Rightarrow m^2⋮7\Rightarrow m⋮7\)(1)
Do đó, đặt m = 7k (\(k\in N\))
=> \(m^2=49k^2\Rightarrow n^2=7k^2\Rightarrow n^2⋮7\Rightarrow n⋮7\)(2)
Từ (1) và (2) Suy ra được m,n cùng chia hết cho 7
=> \(\frac{m}{n}\) chưa là phân số tối giản (vô lí vì trái với giả thiết)
Điều vô lí chứng tỏ \(\sqrt{7}\)là số vô tỉ.
giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
Chứng minh bằng phương pháp phản chứng :
Giả sử \(\sqrt{7}\)l à một số hữu tỉ . Suy ra có thể biểu diễn dưới dạng \(\sqrt{7}=\dfrac{m}{n}\)(\(m,n\)∈\(Z\);n≠0) và \(\dfrac{m}{n}\) tối giản.
⇒\(7n^2=m^2\)⇒\(m^2\)⋮7⇒m⋮7(1)
Do đó, đặt m = 7k (k∈Nk∈N)
⇒\(m^2=49k^2\)⇒\(n^2=7k^2\)⇒\(n^2\)⋮7⇒\(n\)⋮7(2)
Từ (1) và (2) Suy ra được m,n cùng chia hết cho 7
⇒ \(\dfrac{m}{n}\) chưa là phân số tối giản (vô lí vì trái với giả thiết)
Điều vô lí chứng tỏ \(\sqrt{7}\)l à số vô tỉ.