K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

Đặt \(\sqrt{x^2+3}=t\left(t\ge0\right)\)

=>\(t^2=x^2+3\Leftrightarrow x^2=t^2-3\)

Pt trở thành \(\left(3x+1\right)t=t^2-3+2x^2+2x+3\)

<=>\(t^2-\left(3x+1\right)+2x^2+2x=0\)

\(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=x^2-2x+1=\left(x-1\right)^2\)

Nên \(\left[{}\begin{matrix}t=\dfrac{3x+1-x+1}{2}=x+1\\t=\dfrac{3x+1+x-1}{2}=2x\end{matrix}\right.\)

+, \(t=x+1\Leftrightarrow\sqrt{x^2+3}=x+1\Rightarrow x^2+3=x^2+2x+1\left(x\ge-1\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\left(TM\right)\)

+, \(t=2x\Leftrightarrow\sqrt{x^2+3}=2x\Rightarrow x^2+3=4x^2\left(x\ge0\right)\Leftrightarrow3x^2-3=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=-1\left(L\right)\end{matrix}\right.\)

Vậy \(S=\left\{-1;1\right\}\)

1 tháng 1 2019

Thank bạn nha. Ủa mình thấy bạn hay trả lời câu hỏi của mình nè hí hí

7 tháng 8 2020

hở -_-

17 tháng 8 2016

 

 
 

 

14 tháng 7 2019

ĐK \(x\ge-\frac{2}{3}\)

Pt

<=> \(x^3+2x^2-4x-3+3\left(x+1\right)\left(x+1-\sqrt{3x+2}\right)=0\)

<=> \(\left(x+3\right)\left(x^2-x-1\right)+3\left(x+1\right).\frac{\left(x+1\right)^2-3x-2}{x+1+\sqrt{3x+2}}=0\)

<=> \(\left(x+3\right)\left(x^2-x-1\right)+3\left(x+1\right).\frac{x^2-x-1}{x+1+\sqrt{3x+2}}=0\)

<=> \(\orbr{\begin{cases}x^2-x-1=0\\x+3+\frac{3\left(x+1\right)}{x+1+\sqrt{3x+2}}=0\left(2\right)\end{cases}}\)

Pt (2) vô nghiệm do VT>0 với mọi \(x\ge-\frac{2}{3}\)

=> \(x=\frac{1\pm\sqrt{5}}{2}\)(tmĐKXĐ)

Vậy \(x=\frac{1\pm\sqrt{5}}{2}\)

3 tháng 9 2019

Trả lời :

Con a giai pt vế trái rồi nhân căn bình phương cả 2 vế

Con b cũng giải pt vế phải chuyển vế rồi bình phương cả 2 vế

Chắc vậy

k bt 

19 tháng 6 2019

ĐKXĐ: \(x\ge\frac{1}{2}\)

Bình phương hai vế rồi rút gọn, ta được:

\(9x^4-32x^3-70x^2+8x+85=0\)

\(\left(x-5\right)\left(x-1\right)\left(9x^2+22x+17\right)=0\)

\(\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

Vì biểu thức ở cả hai vế chưa chắc ≥ 0 nên thử lại, ta thấy chỉ có \(x=5\) thỏa mãn.

NV
19 tháng 6 2019

ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow3x^2-10x-25+6\left(x+3\right)-2\left(x+3\right)\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+5\right)+2\left(x+3\right)\left[3-\sqrt{2x-1}\right]=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+5\right)-\frac{4\left(x+3\right)\left(x-5\right)}{3+\sqrt{2x-1}}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+5=\frac{4\left(x+3\right)}{3+\sqrt{2x-1}}\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow\left(3x+5\right)\left(3+\sqrt{2x-1}\right)=4x+12\)

\(\Leftrightarrow\left(3x+5\right)\sqrt{2x-1}=-3-5x\)

Do \(x\ge\frac{1}{2}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) \(\Rightarrow ptvn\)

Vậy pt có nghiệm duy nhất \(x=5\)

16 tháng 9 2015

câu hỏi này có cần trả lời ko vậy