K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

\(A=3+3^2+3^3+3^4+...+3^{20}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)

\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{19}.\left(1+3\right)\)

\(A=3.4+3^3.4+...+3^{19}.4\)

\(A=4.\left(3+3^3+...+3^{19}\right)\)

\(\Rightarrow A⋮4\)

\(A=3+3^2+...+3^{20}\)

\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\)

\(A=3.\left(1+3+3^2+3^3\right)+...+3^{17}.\left(1+3+3^2+3^3\right)\)

\(A=3.40+...+3^{17}.40\)

\(A=40.\left(3+...+3^{17}\right)\)

\(\Rightarrow A⋮40\)

30 tháng 12 2018

A=3(1+3)+32(1+3)+....+319(1+3)

  =4(3+32+...+319)

A chia hết cho 4

A=3(1+3+32+33)+...+317(1+3+32+33)

   =3.40+....+317.40

    =40(3+...+317)

A chia hết cho 40

22 tháng 4 2015

giup minh voi sap phai nop roi

18 tháng 1 2018

câu a Achia hết cho 128

26 tháng 11 2018

sai đề r bạn ơi

17 tháng 8 2023

\(A=3+3^2+...+3^{101}+3^{102}\) (thêm 33 bi sót)

\(\Rightarrow A+1=1+3+3^2+...+3^{101}+3^{102}\)

\(\Rightarrow A+1=\dfrac{3^{102+1}-1}{3-1}\)

\(\Rightarrow A+1=\dfrac{3^{103}-1}{2}\)

\(\Rightarrow A=\dfrac{3^{103}-1}{2}-1\)

\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\)

mà \(\left(3^{102}-1\right)\) không chia hết cho 2;4;5

\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\) không chia hết cho 2;4;5

\(\Rightarrow A\) không chia hết cho 40 \(\left(vì40=2.4.5\right)\)

17 tháng 8 2023

\(B=4+4^2+4^3+...+4^{99}\)

\(\Rightarrow B=4\left(1+4^1+4^2\right)+4^4\left(1+4^1+4^2\right)...+4^{97}\left(1+4^1+4^2\right)\)

\(\Rightarrow B=4.21+4^4.21+...+4^{97}.21\)

\(\Rightarrow B=21\left(4+4^4+...+4^{97}\right)⋮21\)

\(\Rightarrow dpcm\)

17 tháng 12 2017

a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210

   = (2 + 22) + (23 + 24) +.....+ (29 + 210)

   = 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)

   = 3.(2 + 23 +.... + 29) chia hết cho 3

   => S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)

b) 1+32+33+34+...+399

=(1+3+32+33)+....+(396+397+398+399)

=40+.........+396.40

=40.(1+....+396) chia hết cho 40 (đpcm)

17 tháng 12 2017

ai trả lời giúp mình mình k cho

10 tháng 11 2018

\(B=4+4^2+4^3+...+4^{20}\)

     \(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{19}+4^{20}\right)\)

       \(=4.\left(1+4\right)+4^3.\left(1+4\right)+....+4^{19}.\left(1+4\right)\)

         \(=5.\left(4+4^3+...+4^{19}\right)⋮5\)

Vậy B chia hết cho 5

\(C=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{19}+7^{20}\right)\)

     \(=7.\left(1+7\right)+7^3.\left(1+7\right)+....+7^{19}.\left(1+7\right)\)

       \(=7.8+7^3.8+...+7^{19}.8\)

        \(=8.\left(7+7^3+...+7^{19}\right)⋮8\)

Vậy C chia hết cho 8

25 tháng 11 2021

mình chưa học đến thông cảm nhé