Chứng minh các bt sau ko phụ thuộc vào biến
a) (x-1)^2-2(x-3)+(x-3)^2
b) (x-1)^3-(x+2)(x+2)(x^2-2x+4)+3x^2-3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+6x+9-4x-1-2x-x^2=9\\ B=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ C=\left(3x+5-3x+5\right)^2=100\)
a: \(A=x^2+6x+9-4x-1-2x-x^2=8\)
b: \(B=2x^2+3x-10x-15-2x^2+6x+x+7=-8\)
a) \(\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2+11\right)\)
\(=\left(6x^2+23x+21\right)-\left(6x^2+23x-55\right)\)
\(=21+55=76\)
Vậy gt của bt không phụ thuộc vào gt của biến
b) \(\left(3x^2-2x+1\right)\left(x^2+2x+3\right)-4x\left(x^2-1\right)-3x^2\left(x^2+2\right)\)
\(=3x^4+4x^3+6x^2-4x+3-4x^3+4x-3x^4-6x^2\)
\(=3\)
Vật gt của bt không phụ thuộc vào gt của biến
1) \(3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)^2-\left(5-16x\right)\)
\(=3\left(x^2-2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-\left(5-16x\right)\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-4x^2-12x-9-5+16x\)
\(=-30\)
\(A=\left(3x-1\right)^2-\left(x-1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2+\left(16x-5\right)\)
\(=9x^2-6x+1-x^2+2x-1+2\left(x^2-9\right)-\left(4x^2+12x+9\right)+16x-5\)
\(=8x^2+12x-5+2x^2-18-4x^2-12x-9\)
\(=6x^2-32\)
a) \(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
b) \(=3x^3-x^2+5x-2x^3-3x+16-x^3+x^2-2x\)
\(=16\)
Câu 2:
a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)
\(=-2x^2+10x+3x-3+2x^2-13x\)
\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)
\(=0+0-3\)
\(=-3\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)
\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)
\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)
\(=0+0+0+0\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Câu 4:
a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)
\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)
\(A=-7\)
Thay \(x=-2\) vào biểu thức A ta có:
\(A=-7\)
Vậy giá trị của biểu thức A là -7 tại \(x=-2\)
b) \(B=x^5-15x^4+16x^3-29x^2+13x\)
\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(B=-x\)
Thay \(x=14\) vào biểu thức B ta được:
\(B=-14\)
Vậy giá trị của biểu thức B tại \(x=14\) là -14
a) \(A=\left(3x-2\right)\left(3x+2\right)-\left(3x+1\right)^2-3.\left(-2x-1\right)\)
\(=\left(3x\right)^2-4-\left(9x^2+6x+1\right)+6x+3\)
\(=9x^2-4-9x^2-6x-1+6x+3\)
\(=-2\) không phụ thuộc vào x
b) \(B=\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2-4.\left(x+3\right)\)
\(=x^2-1-\left(x^2-4x+4\right)-\left(4x+12\right)\)
\(=x^2-1-x^2+4x-4-4x-12\)
\(=-17\)không phụ thuộc vào x.
a, \(A=\left(2x+5\right)\left(3x+2\right)-\left(3x+5\right)\left(2x+3\right)\)
\(=6x^2+4x+15x+10-6x^2-9x-10x-15=-5\)
Vậy biểu thức ko phụ thuộc biến x
b, \(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
Vậy biểu thức ko phụ thuộc biến x
Mấy dạng này cứ nhân tung hết ra là xong :")
a.\(A=\left(2x+5\right)\left(3x+2\right)-\left(3x+5\right)\left(2x+3\right)\)
\(=2x\left(3x+2\right)+5\left(3x+2\right)-\left[3x\left(2x+3\right)+5\left(2x+3\right)\right]\)
\(=6x^2+4x+15x+10-6x^2-9x-10x-15\)
\(=\left(6x^2-6x^2\right)+\left(4x+15x-9x-10x\right)+\left(10-15\right)\)
\(=0+0-5\)
\(=-5\)
Vậy bt A khong phụ thuộc vào biến x
b.\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
\(=\left(2x^2-2x^2\right)+\left(x-x\right)+\left(-x^3+x^3\right)+3\)
\(=0+0+0+3\)
\(=3\)
Vậy bt B khong phụ thuộc vào biến x
a: Sửa đề: (x-1)^2-2(x-3)^2+(x-3)^2
=x^2-2x+1+x^2-6x+9-2(x^2-6x+9)
=2x^2-8x+10-2x^2+12x-18=4x-8
b: \(=x^3-3x^2+3x-1+3x^2-3x-\left(x^3+8\right)\)
=x^3-1-x^3-8
=-9