Nhận dạng tam giác ABC biết:
a) b4+c4=a4-2b2c2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\) thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)
https://olm.vn/hoi-dap/detail/108617134952.html
Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo
1: =(a+b)^3+c^3-3ab(a+b)-3acb
=(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
Đặt \(A=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ca\right)^2\right)\)
\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2-4\left(ca\right)^2\right)\)
Áp dụng hàng đẳng thức \(\left(a^2-b^2+c^2\right)=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2\):
\(A=-\left[\left(a^2-b^2+c^2\right)^2-4\left(ca\right)^2\right]\)
\(A=-\left(a^2-b^2+c^2-2ca\right)\left(a^2-b^2+c^2+2ca\right)\)
2222222222222a+257222222222222222222222222222222222222222222222222222222222222222222222222222222222222222a=?
Lời giải:
PT $\Leftrightarrow (a^2+b^2)^2-2(a^2+b^2)c^2+c^4-a^2b^2=0$
$\Leftrightarrow (a^2+b^2-c^2)^2-(ab)^2=0$
$\Leftrightarrow (a^2+b^2-c^2-ab)(a^2+b^2-c^2+ab)=0$
$\Rightarrow a^2+b^2-c^2-ab=0$ hoặc $a^2+b^2-c^2+ab=0$
Áp dụng định lý cosin:
Nếu $a^2+b^2-c^2-ab=0$
$\cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{a^2+b^2-c^2}{2(a^2+b^2-c^2)}=\frac{1}{2}$
$\Rightarrow \widehat{C}=60^0$
Nếu $a^2+b^2-c^2+ab=0$
$\cos C=\frac{-1}{2}\Rightarrow \widehat{C}=120^0$
Chọn A.
Từ giả thiết suy ra: a > b và a > c do đó góc A là góc lớn nhất
Khi đó: a4 = b4 +c4 < a2b2 + a2c2
Suy ra a2 < b2 + c2
Mặt khác theo định lí côsin ta có
do đó
Vậy tam giác ABC nhọn.
\(a,b,c>0;abc=1000\)
\(P=\sum\dfrac{a}{b^4+c^4+1000a}\le\sum\dfrac{a}{bc\left(b^2+c^2\right)+a^2bc}=\sum\dfrac{a^2}{abc\left(a^2+b^2+c^2\right)}=\dfrac{\left(a^2+b^2+c^2\right)}{1000\left(a^2+b^2+c^2\right)}=\dfrac{1}{1000}\)
P đạt GTLN là 1/1000 khi \(a=b=c=10\)
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2=\left(a^4-2a^2b^2+b^4\right)+2\left(a^2-b^2\right)c^2+c^4-4a^2c^2=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2=\left(a^2-b^2+c^2-2ac\right)\left(a^2-b^2+c^2+2ac\right)\)
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=\left(a^4-2a^2b^2+b^4\right)+2\left(a^2-b^2\right)c^2+c^4-4a^2c^2\)
\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)
\(=\left(a^2-2ac+c^2-b^2\right)\left(a^2+2ac+c^2-b^2\right)\)
\(=\left(a-c-b\right)\left(a-c+b\right)\left(a+c-b\right)\left(a+c+b\right)\)
Lời giải:
Ta có: \(b^4+c^4=a^4-2b^2c^2\)
\(\Leftrightarrow b^4+c^4+2b^2c^2-a^4=0\)
\(\Leftrightarrow (b^2+c^2)^2-(a^2)^2=0\)
\(\Leftrightarrow (b^2+c^2-a^2)(b^2+c^2+a^2)=0\)
\(\Rightarrow \left[\begin{matrix} b^2+c^2-a^2=0\\ b^2+c^2+a^2=0(\text{vô lý})\end{matrix}\right.\)
\(\Rightarrow b^2+c^2-a^2=0\Rightarrow b^2+c^2=a^2\)
Theo định lý Pitago đảo thì từ trên suy ra tam giác $ABC$ là tam giác vuông.