Tìm x thuộc z
-5<x+4<5
1</x+5/<2
2</x+1/<4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk làm mẫu các phần khác tương tự nhé !
\(F=\frac{-11}{x+1}\)hay \(x+1\inƯ\left(-11\right)=\left\{\pm1;\pm11\right\}\)
x + 1 | 1 | -1 | 11 | -11 |
x | 0 | -2 | 10 | -12 |
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
M=\(\frac{\sqrt{x}+5}{\sqrt{x}+1}\)= \(\frac{\sqrt{x}+1+4}{\sqrt{x}+1}\)= 1+\(\frac{4}{\sqrt{x}+1}\)
Để M thuộc Z thì \(\frac{4}{\sqrt{x}+1}\) thuộc Z =>\(\sqrt{x}+1\) thuộc Ư(4)={ -1 ; 1 ; -2 ; 2 ; -4; 4 }
\(\sqrt{x}+1\) | -4 | -2 | -1 | 1 | 2 | 4 |
\(\sqrt{x}\) | -5 | -3 | -2 | 0 | 1 | 3 |
x | 25 | 9 | 4 | 0 | 1 | 9 |
KL : Với x thuộc {25 ; 9 ;4 ;0 ;1 } thì M thuộc Z
Chú ý nha bạn : Câu a và câu b như nhau vì m thuộc z <=> m có giá trị nguyên
\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
\(a)\)
\(\text{Để A có giá trị nguyên: }\)
\(\frac{9}{x-4}\in Z\)
\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)
\(b)\)
\(\text{Để A có giá trị lớn nhất: }\)
\(\frac{9}{x-4}\)\(\text{lớn nhất}\)
\(x-4=1\)
\(x=5\)
\(c)\)
\(\text{Để A đạt giá trị nhỏ nhất:}\)
\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)
\(x-4=-1\)
\(x=3\)
Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)
Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)
Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)
b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)
Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4=1\)
\(\Rightarrow x=5\)
\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)
\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)
c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)
Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4\in Z\)
\(\Rightarrow x-4=-1\)
\(\Rightarrow x=3\)
\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)
\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)
a) -5<x+4<5 => -5 -4<x+4-4<5-4<=>-9<x<1
b)1<|x+5|<2=> 1<x+5<2;1<-(x+5)<2
* 1<x+5<2=>1-5<x+5-5<2-5<=>-4<x<-3
*1<-(x+5)<2 <=> 1<5-x<2 <=>-4<-x<-3
c)2<|x+1|<4 =>2<x+1<4 2<-(x+1)<4
2<x+1<4=>1<x<3
2<-(x+1)<4=>2<1-x<4<=>1<-x<3
Thông cảm kết quả bạn tự suy ra nhé