Tìm x biết \(\left(x-19\right)^{x+2000}\) - \(\left(x-19\right)^{x+2018}\) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)642-\left[0,04:\left(x+1,05\right)\right]:0,12=19\)
=> \(\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\right)642-0,04:\left(x+1,05\right):0,12=19\)
=>
(nãy bấm nhầm) tiếp nà :
=> \(\left(\frac{1}{11}-\frac{1}{21}\right)462-0,04:\left(x+1,05\right):0,12=19\)
=> \(\frac{10}{231}.462-0,04:\left(x+1,05\right):0,12=19\)
=> \(20-0,04:\left(x+1,05\right):0,12=19\)
=> 0,04 : (x + 1,05) : 0,12 = 1
=> 0,04 : (x + 1,05) = 0,12
=> \(x+1,05=\frac{1}{3}\)
=> \(x=\frac{1}{3}-1,05=...\)
\(\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-...+\frac{1}{19}-\frac{1}{21}\right).462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\)
\(\left(\frac{1}{11}-\frac{1}{21}\right).462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\)
\(\frac{10}{231}.462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\)
\(20-\left[2,04:\left(x+1,05\right)\right]:0,12=19\)
\(\left[2,04:\left(x+1,05\right)\right]:0,12=20-19=1\)
\(2,04:\left(x+1,05\right)=0,12\)
\(x+1,05=2,04:0,12\)
x+1,05=17
x=17-1,05=15,95
Lời giải của mình ở đây nha bạn!
http://olm.vn/hoi-dap/question/424173.html
\(S=\left\{\frac{4023}{2};\frac{4015}{2}\right\}\)
Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)
À khác cái dấu nhưng đề phải là giải phương trình chứ
Đặt 2017-x=a => x-2018=-a-1 phương trình trở thành:
\(\frac{a^2+a\left(-a-1\right)+\left(a-1\right)^2}{a^2-a\left(-a-1\right)+\left(a-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)
\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)
\(\Leftrightarrow8a^2+8a-30=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=2015,5\\x=2019,5\end{cases}}}\)
Vậy......................
a)\(\left(2x-3\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\) hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại) hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)
\(\Leftrightarrow-1< x< \frac{3}{2}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)
c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)
Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow x=4\)
\(\left(x-19\right)^{x+2000}-\left(x-19\right)^{x+2018}=0\) \(\rightarrow\left(x-19\right)^{x+2000}-\left(x-19\right)^{x+2000+18}=0\) \(\left(x-19\right)^{x+2000}-\left(x-19\right)^{x+2000}.\left(x-19\right)^{18}=0\) \(\left(x-19\right)^{x+2000}.\left[1-\left(x-19\right)^{18}\right]=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\left(x-19\right)^{x+2000}=0\\1-\left(x-19\right)^{18}=0\end{matrix}\right.\) TH1 : \(\left(x-19\right)^{x+2000}=0\) \(\Leftrightarrow x-19=0\Rightarrow x=19\) TH2: \(\left(x-19\right)^{18}=0\) \(\Leftrightarrow\left(x-19\right)^{18}=1=1^{18}hoặc\left(-1\right)^{18}\) \(\Rightarrow\left[{}\begin{matrix}x-19=1\\x-19=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=20\\x=18\end{matrix}\right.\) Vậy \(x\in\left\{18;19;20\right\}\)
Để (x - 19)x+2000 - (x - 19)x+2018 = 0
Thì (x - 19)x+2000 = 0
=> x - 19 = 0
=> x = 19 (1)
Thì (x - 19)x+2018 = 0
=> x - 19 = 0
=> x = 19 (2)
Từ (1) và (2) suy ra x = 19
Thì (x - 19)x+2000 - (x - 19)x+2018 = 0
CHÚC BẠN HỌC TỐT!