\(\left(x-19\right)^{x+2000}\) -
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

\(\left(x-19\right)^{x+2000}-\left(x-19\right)^{x+2018}=0\) \(\rightarrow\left(x-19\right)^{x+2000}-\left(x-19\right)^{x+2000+18}=0\) \(\left(x-19\right)^{x+2000}-\left(x-19\right)^{x+2000}.\left(x-19\right)^{18}=0\) \(\left(x-19\right)^{x+2000}.\left[1-\left(x-19\right)^{18}\right]=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\left(x-19\right)^{x+2000}=0\\1-\left(x-19\right)^{18}=0\end{matrix}\right.\) TH1 : \(\left(x-19\right)^{x+2000}=0\) \(\Leftrightarrow x-19=0\Rightarrow x=19\) TH2: \(\left(x-19\right)^{18}=0\) \(\Leftrightarrow\left(x-19\right)^{18}=1=1^{18}hoặc\left(-1\right)^{18}\) \(\Rightarrow\left[{}\begin{matrix}x-19=1\\x-19=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=20\\x=18\end{matrix}\right.\) Vậy \(x\in\left\{18;19;20\right\}\)

27 tháng 12 2018

Để (x - 19)x+2000 - (x - 19)x+2018 = 0
Thì (x - 19)x+2000 = 0
=> x - 19 = 0
=> x = 19 (1)
Thì (x - 19)x+2018 = 0
=> x - 19 = 0
=> x = 19 (2)
Từ (1)(2) suy ra x = 19
Thì (x - 19)x+2000 - (x - 19)x+2018 = 0
CHÚC BẠN HỌC TỐT!

29 tháng 7 2018

mik chỉ làm được một bài thôi cậu chọn đi bài nào nói với mik , mik làm cho

29 tháng 7 2018

Bài 1:

a) \(\left|x-\dfrac{2}{3}\right|+\left|y+x\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-\dfrac{2}{3}\right|=0\\\left|y+x\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{3}=0\\y+x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{2}{3}\end{matrix}\right.\)

b) \(\left(x-2y\right)^2+\left|x+\dfrac{1}{6}\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left|x+\dfrac{1}{6}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x+\dfrac{1}{6}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=x\\x=-\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=-\dfrac{1}{6}\\x=-\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{12}\\x=\dfrac{-1}{6}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Bài 1:

a)
\(|x+\frac{4}{15}|-|-3,75|=-|-2,15|\)

\(\Leftrightarrow |x+\frac{4}{15}|-3,75=-2,15\)

\(\Leftrightarrow |x+\frac{4}{15}|=-2,15+3,75=\frac{8}{5}\)

\(\Rightarrow \left[\begin{matrix} x+\frac{4}{15}=\frac{8}{5}\\ x+\frac{4}{15}=-\frac{8}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{4}{3}\\ x=\frac{-28}{15}\end{matrix}\right.\)

b )

\(|\frac{5}{3}x|=|-\frac{1}{6}|=\frac{1}{6}\)

\(\Rightarrow \left[\begin{matrix} \frac{5}{3}x=\frac{1}{6}\\ \frac{5}{3}x=-\frac{1}{6}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{10}\\ x=-\frac{1}{10}\end{matrix}\right.\)

c)

\(|\frac{3}{4}x-\frac{3}{4}|-\frac{3}{4}=|-\frac{3}{4}|=\frac{3}{4}\)

\(\Leftrightarrow |\frac{3}{4}x-\frac{3}{4}|=\frac{3}{2}\)

\(\Rightarrow \left[\begin{matrix} \frac{3}{4}x-\frac{3}{4}=\frac{3}{2}\\ \frac{3}{4}x-\frac{3}{4}=-\frac{3}{2}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=-1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Bài 3:

a) Ta thấy:

\(|x+\frac{15}{19}|\geq 0, \forall x\Rightarrow A\ge 0-1=-1\)

Vậy GTNN của $A$ là $-1$ khi \(x+\frac{15}{19}=0\Leftrightarrow x=-\frac{15}{19}\)

b)Vì \(|x-\frac{4}{7}|\geq 0, \forall x\Rightarrow B\geq \frac{1}{2}+0=\frac{1}{2}\)

Vậy GTNN của $B$ là $\frac{1}{2}$ khi \(x-\frac{4}{7}=0\Leftrightarrow x=\frac{4}{7}\)

\(\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}\)\(=\dfrac{x}{15}\cdot\dfrac{15}{\left(x+2\right)\left(x+17\right)}\) \(\dfrac{1}{x+2}-\dfrac{1}{x+17}\)\(=\dfrac{x}{15}\cdot\left(\dfrac{1}{x+2}-\dfrac{1}{x+17}\right)\)

\(\dfrac{x}{15}=\left(\dfrac{1}{x+2}-\dfrac{1}{x+17}\right):\left(\dfrac{1}{x+2}-\dfrac{1}{x+17}\right)\)

\(\dfrac{x}{15}=1\)

\(x=15\cdot1\)

\(x=15\)

Đề HSG mà

25 tháng 1 2017

a) Ta có: \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\)

\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+\frac{3}{4}\right|=0\\\left|x-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}=\frac{11}{20}\end{matrix}\right.\)

Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)

b) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{3}\right|+\left|z-\frac{1}{2}\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{2}{3}\right|=0\\z+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+\frac{3}{4}=0\\y-\frac{2}{3}=0\\z+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{-3}{4}\\y=\frac{2}{3}\\z=\frac{-1}{2}\end{matrix}\right.\)

Vậy \(x=\frac{-3}{4};y=\frac{2}{3};z=\frac{-1}{2}\)

d) \(\left|x+1\right|+\left|x^2-1\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+1\right|=0\\\left|x^2-1\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+1=0\\x^2-1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-1\\x=\pm1\end{matrix}\right.\)

Vậy \(x\in\left\{1;-1\right\}\)

17 tháng 2 2017

thiếu phần c) rồi bạn ơi

13 tháng 10 2016

bn đăng từng câu 1 thôi nhe

 

13 tháng 10 2016

anh tl từng câu một cũng đc mà

17 tháng 6 2018

a, \(\left|3x-4\right|+\left|3y+5\right|=0\)

Ta có :

\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)

\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)

b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)

Ta có :

\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)

c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)

Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)

d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

Ta có :

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)

e, Câu cuối bn làm tương tự như câu a, b, c nhé!

17 tháng 6 2018

bạn ơi cho mình hỏi là chứ A viết ngược kia là gì vậy ạ?

14 tháng 9 2019

\(\left|x-3\right|+\left|x+2\right|=7\)

-TH: \(x< -2\) thì ta được phương trình :

\(3-x+-x-2=7\)

\(\Leftrightarrow-2x=6\)

\(\Leftrightarrow x=-3\left(c\right)\)

-TH: \(-2\le x< 3\) thì ta được phương trình:

\(3-x+x+2=7\)

\(\Leftrightarrow5=7\)(vô lí nên loại)

-TH: \(x\ge3\) thì ta được phương trình:

\(x-3+x+2=7\)

\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=4\left(c\right)\)

Vậy nghiệm của phương trình là \(S=\left\{-3;4\right\}\)

14 tháng 9 2019

3a)Ta xét:

-TH: \(x< 0\) thì \(x-2< 0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)

-TH: \(0< x< 2\) thì \(x>0\), \(x-2< 0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\left(c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2< 0\\x-3< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< 2\\x< 3\end{matrix}\right.\)

\(\Rightarrow0< x< 2\)

-TH: \(2< x< 3\) thì \(x>0\), \(x-2>0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)

-TH: \(x>3\) thì \(x>0\), \(x-2>0\)\(x-3>0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2>0\\x-3>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x>3\end{matrix}\right.\)

\(\Rightarrow x>3\)

Vậy nghiệm của phương trình là 0<x<2 và x>3

b)Dựa vào câu a haha ta có:

-TH: \(x< 0\) thì \(x-2< 0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)

\(\Rightarrow\left\{{}\begin{matrix}x< 0\\x< 2\\x< 3\end{matrix}\right.\)

\(\Rightarrow x< 0\)

-TH:\(2< x< 3\) thì \(x>0\), \(x-2>0\), \(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x< 3\end{matrix}\right.\)

\(\Rightarrow2< x< 3\)

Vậy nghiệm của phương trình là x<0 và 2<x<3

Không biết có đúng không nữa hiu

25 tháng 10 2018

a, (x3)2 : (x2)3 = x3.2 : x2.3

= x6 : x6 = 1

b,\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)

\(=\dfrac{\left(2^2\right)^5.\left(3^2\right)^4-\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.20}\)

\(=\dfrac{2^6.3^8-\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.20}\)

\(=\dfrac{1.1-6^9}{16.1+6^8.20}\)

= \(=\dfrac{1-6}{16+1.20}=\dfrac{-5}{16+20}=\dfrac{-5}{36}\)

29 tháng 10 2022

Bài 2: 

a: \(\left(-\dfrac{1}{16}\right)^{100}=\left(\dfrac{1}{2}\right)^{400}>\left(-\dfrac{1}{2}\right)^{100}\)

b: \(\left(-32\right)^9=\left(-2\right)^{45}\)

\(\left(-18\right)^{13}=\left(-3^2\cdot2\right)^{13}=-3^{26}\cdot2^{13}\)

mà -3^26>-2^32

nên (-32)^9>(-18)^13