mình đang cần rất gấp
cho tam giac mnp vuông tại m, tia phan giac cua mnp cắt mp tại o. trên cạnh np lấy điểm h sao cho mn=nh.
a) chứng minh tam giác mno= tam giác hno và oh vuông góc với np
b) gọi k là giao điểm của mn và oh. chứng minh ok=op
c) hai đường thẳng no và kp cắt nhau tại i. chứng minh i là trung điểm của kp. chứng minh mh song song với kp
Câu a)
Xét tam giác MNO và tam giác HNO có :
NO : chung
MN = NH ( GT )
góc MNO = góc ONH ( do NO là phân giác góc MNP )
=> tam giác MNO = tam giác HNO ( cgc )
=> góc NMO = góc OHN ( cặp góc tương ứng )
mà góc NMO = 90 độ ( GT )
=> góc OHN = 90 độ
=> OH vuông góc NP
Vậy....
Câu b)
Do tam giác MNO = tam giác HNO ( CM ở câu a )
=> MO = OH
Xét tam giác MOK và tam giác HOP có :
góc OMK = góc OHP ( = 90 độ )
MO = HO ( CMT )
góc MOK = góc HOP ( 2 góc đối đỉnh )
=> tam giác MOK = tam giác HOP ( gcg )
=> OK = OP
Câu c)
Do tam giác MNO = tam giác HNO ( CM ở câu a)
=> góc NOM = góc NOH ( cặp góc tương ứng )
Mà góc NOM = góc IOP ( 2 góc đối đỉnh )
và góc NOH = góc KOI ( 2 góc đối đỉnh )
=> góc KOI = góc POI
Xét tam giác KOI và tam giác POI có :
OK =PO ( CM ở câu b )
OI : chung
góc KOI = góc POI ( CMT )
=> tam giác KOI = tam giác POI ( cgc )
=> KI = IP
=> I là trung điểm KP
Ta có : NM = NH ( GT )
Mà MK = HP ( do tam giác MOK = tam giác HOP )
=> MN + MK = HN + HP
=> NK = NP
=> tam giác NKP cân tại N
=> góc NKP = ( 180 độ - góc KNP )/2
CMTT : góc NMH = ( 180 độ - góc MNH )/2
Hay góc NMH = ( 180 độ - góc KNP )/2
=> góc NKP = góc NMH
Mà 2 góc ở vị trí đồng vị
=> MH // PK
Xét tam giác MNO và tam giác HNO có :
NO : chung
MN = NH ( GT )
góc MNO = góc ONH ( do NO là phân giác góc MNP )
=> tam giác MNO = tam giác HNO ( cgc )
=> góc NMO = góc OHN ( cặp góc tương ứng )
mà góc NMO = 90 độ ( GT )
=> góc OHN = 90 độ
=> OH vuông góc NP
Vậy....
Câu b)
Do tam giác MNO = tam giác HNO ( CM ở câu a )
=> MO = OH
Xét tam giác MOK và tam giác HOP có :
góc OMK = góc OHP ( = 90 độ )
MO = HO ( CMT )
góc MOK = góc HOP ( 2 góc đối đỉnh )
=> tam giác MOK = tam giác HOP ( gcg )
=> OK = OP
Câu c)
Do tam giác MNO = tam giác HNO ( CM ở câu a)
=> góc NOM = góc NOH ( cặp góc tương ứng )
Mà góc NOM = góc IOP ( 2 góc đối đỉnh )
và góc NOH = góc KOI ( 2 góc đối đỉnh )
=> góc KOI = góc POI
Xét tam giác KOI và tam giác POI có :
OK =PO ( CM ở câu b )
OI : chung
góc KOI = góc POI ( CMT )
=> tam giác KOI = tam giác POI ( cgc )
=> KI = IP
=> I là trung điểm KP
Ta có : NM = NH ( GT )
Mà MK = HP ( do tam giác MOK = tam giác HOP )
=> MN + MK = HN + HP
=> NK = NP
=> tam giác NKP cân tại N
=> góc NKP = ( 180 độ - góc KNP )/2
CMTT : góc NMH = ( 180 độ - góc MNH )/2
Hay góc NMH = ( 180 độ - góc KNP )/2
=> góc NKP = góc NMH
Mà 2 góc ở vị trí đồng vị
=> MH // PK