Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự ve hình nha
Câu a)
Xét tam giác MNO và tam giác HNO có :
NO : chung
MN = NH ( GT )
góc MNO = góc ONH ( do NO là phân giác góc MNP )
=> tam giác MNO = tam giác HNO ( cgc )
=> góc NMO = góc OHN ( cặp góc tương ứng )
mà góc NMO = 90 độ ( GT )
=> góc OHN = 90 độ
=> OH vuông góc NP
Vậy....
Câu b)
Do tam giác MNO = tam giác HNO ( CM ở câu a )
=> MO = OH
Xét tam giác MOK và tam giác HOP có :
góc OMK = góc OHP ( = 90 độ )
MO = HO ( CMT )
góc MOK = góc HOP ( 2 góc đối đỉnh )
=> tam giác MOK = tam giác HOP ( gcg )
=> OK = OP
a) xét tam giác MND và tam giác END ta có
MN = EN
góc MND = góc END
ND: cạnh chung
suy ra tam giác MND = tam giác END
suy ra DM = DE và óc NMD = góc NEDsuy ra góc NED = 90 độ
b) ta có tam giác MND = tam giác END suy ra MD = ED
xét tam giác DMK và tam giác DEP ta có
góc KMD = góc PED ( =90độ)
MD = ED
góc MDK = góc EDP( hai góc đối đinh)
suy ra tam giác DMK = tam giác DEP(đpcm)
c)ta có tam giác DMK = tam giác DEP suy ra MK=EP
ta có NM = NEvà MK = EP suy ra MN+MK=NE+EP suy ra NK=NP
xet tam giác KNDvà tam giác PND ta có
NK=NP
KND= PND
ND:cạnh chung
suy ra tam giác KND=tam giác PND suy ra góc NDK = góc NDP
ta có góc NDK+góc NDP=180 độ và góc NDK= góc NDP
suy góc NDK = góc NDP =90độ
suy ra ND vuông góc với KP
a: NP=căn 3^2+4^2=5cm
b: Xét ΔNMK vuông tại M và ΔNHK vuông tại H có
NK chung
góc MNK=góc HNK
=>ΔNMK=ΔNHK
c: Xét ΔKMI vuông tại M và ΔKHP vuông tại H có
KM=KH
góc MKI=góc HKP
=>ΔKMI=ΔKHP
=>KI=KP
=>KP>MI
1: Xét ΔMIK vuông tại I và ΔMAK vuông tại A có
MK chung
góc IMK=góc AMK
=>ΔMIK=ΔMAK
=>góc IKM=góc AKM
=>KM là phân giác của góc AKI
2: KI=KA
KA<KP
=>KI<KP
3: Xét ΔMBP có
PI,BA là đường cao
PI cắt BA tại K
=>K là trực tâm
=>MK vuông góc PB
MI=MA
KI=KA
=>MK là trung trực của AI
=>MK vuông góc AI
=>AI//PB
a: Xét ΔMNO và ΔMBO có
MN=MB
NO=BO
MO chung
Do đó: ΔMNO=ΔMBO
b: Ta có: ΔMNO=ΔMBO
=>\(\widehat{NMO}=\widehat{BMO}\)
=>\(\widehat{NMA}=\widehat{BMA}\)
Xét ΔNMA và ΔBMA có
MN=MB
\(\widehat{NMA}=\widehat{BMA}\)
MA chung
Do đó: ΔNMA=ΔBMA
=>AN=AB
c: Ta có: ΔMNB cân tại M
mà MO là đường trung tuyến
nên MO\(\perp\)NB
mà NB//CP
nên MO\(\perp\)CP
mà MO cắt CP tại H
nên MO\(\perp\)CP tại H
Xét ΔMCP có
MH là đường phân giác
MH là đường cao
Do đó: ΔMCP cân tại M
=>MC=MP
d: Ta có: MN+NC=MC
MB+BP=MP
mà MN=MB và MC=MP
nên NC=BP
Ta có: ΔMCP cân tại M
mà MH là đường phân giác
nênMH là đường trung trực của CP
mà A\(\in\)MH
nên A nằm trên trung trực của PC
=>AP=AC
Xét ΔANC và ΔABP có
AN=AB
NC=BP
AC=AP
Do đó: ΔANC=ΔABP
=>\(\widehat{NAC}=\widehat{BAP}\)
mà \(\widehat{BAP}+\widehat{BAN}=180^0\)(hai góc kề bù)
nên \(\widehat{NAC}+\widehat{BAN}=180^0\)
=>B,A,C thẳng hàng
M P N 3 4 A C G
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
Câu a)
Xét tam giác MNO và tam giác HNO có :
NO : chung
MN = NH ( GT )
góc MNO = góc ONH ( do NO là phân giác góc MNP )
=> tam giác MNO = tam giác HNO ( cgc )
=> góc NMO = góc OHN ( cặp góc tương ứng )
mà góc NMO = 90 độ ( GT )
=> góc OHN = 90 độ
=> OH vuông góc NP
Vậy....
Câu b)
Do tam giác MNO = tam giác HNO ( CM ở câu a )
=> MO = OH
Xét tam giác MOK và tam giác HOP có :
góc OMK = góc OHP ( = 90 độ )
MO = HO ( CMT )
góc MOK = góc HOP ( 2 góc đối đỉnh )
=> tam giác MOK = tam giác HOP ( gcg )
=> OK = OP
Câu c)
Do tam giác MNO = tam giác HNO ( CM ở câu a)
=> góc NOM = góc NOH ( cặp góc tương ứng )
Mà góc NOM = góc IOP ( 2 góc đối đỉnh )
và góc NOH = góc KOI ( 2 góc đối đỉnh )
=> góc KOI = góc POI
Xét tam giác KOI và tam giác POI có :
OK =PO ( CM ở câu b )
OI : chung
góc KOI = góc POI ( CMT )
=> tam giác KOI = tam giác POI ( cgc )
=> KI = IP
=> I là trung điểm KP
Ta có : NM = NH ( GT )
Mà MK = HP ( do tam giác MOK = tam giác HOP )
=> MN + MK = HN + HP
=> NK = NP
=> tam giác NKP cân tại N
=> góc NKP = ( 180 độ - góc KNP )/2
CMTT : góc NMH = ( 180 độ - góc MNH )/2
Hay góc NMH = ( 180 độ - góc KNP )/2
=> góc NKP = góc NMH
Mà 2 góc ở vị trí đồng vị
=> MH // PK
Xét tam giác MNO và tam giác HNO có :
NO : chung
MN = NH ( GT )
góc MNO = góc ONH ( do NO là phân giác góc MNP )
=> tam giác MNO = tam giác HNO ( cgc )
=> góc NMO = góc OHN ( cặp góc tương ứng )
mà góc NMO = 90 độ ( GT )
=> góc OHN = 90 độ
=> OH vuông góc NP
Vậy....
Câu b)
Do tam giác MNO = tam giác HNO ( CM ở câu a )
=> MO = OH
Xét tam giác MOK và tam giác HOP có :
góc OMK = góc OHP ( = 90 độ )
MO = HO ( CMT )
góc MOK = góc HOP ( 2 góc đối đỉnh )
=> tam giác MOK = tam giác HOP ( gcg )
=> OK = OP
Câu c)
Do tam giác MNO = tam giác HNO ( CM ở câu a)
=> góc NOM = góc NOH ( cặp góc tương ứng )
Mà góc NOM = góc IOP ( 2 góc đối đỉnh )
và góc NOH = góc KOI ( 2 góc đối đỉnh )
=> góc KOI = góc POI
Xét tam giác KOI và tam giác POI có :
OK =PO ( CM ở câu b )
OI : chung
góc KOI = góc POI ( CMT )
=> tam giác KOI = tam giác POI ( cgc )
=> KI = IP
=> I là trung điểm KP
Ta có : NM = NH ( GT )
Mà MK = HP ( do tam giác MOK = tam giác HOP )
=> MN + MK = HN + HP
=> NK = NP
=> tam giác NKP cân tại N
=> góc NKP = ( 180 độ - góc KNP )/2
CMTT : góc NMH = ( 180 độ - góc MNH )/2
Hay góc NMH = ( 180 độ - góc KNP )/2
=> góc NKP = góc NMH
Mà 2 góc ở vị trí đồng vị
=> MH // PK