K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8x+x=3^2.12

5
26 tháng 12 2018

\(8x+x=3^2\cdot12\)

\(9x=9\cdot12\)

\(x=12\)

26 tháng 12 2018

Ta có : 8x + x = 3\(^2\). 12

\(\Rightarrow\)9x = 9 . 12

\(\Rightarrow\)9x = 108

\(\Rightarrow\)x = 12

26 tháng 12 2018

a) 47 - [ (45.24 - 52.12) : 14 ]

= 47 - ( 420 : 14 )

= 47 - 30

= 17

26 tháng 12 2018

b) |-18| + (-12)

= 18 - 12

= 6

22 tháng 12 2019

\(x^2-1=2^2.12\)

\(x^2-1=4.12\)

\(x^2-1=48\)

\(x^2\)       \(=48+1\)

\(x^2\)       \(=49\)

\(x^2\)         \(=7^2\)    

=>\(x=7\)

19 tháng 7 2016

1. (7.x-15):3=2                               2. 12.(x+37)=504                                  3. 85-3.(7+x)=64

    7.x-15=2.3                                          x+37=504:12                                  3.(7+x)=85-64 

    7.x-15=6                                             x+37=42                                         3.(7+x)=21

    7.x=6+15                                            x=42-37                                           7+x=21:3

    7.x=21                                                x=5                                                 7+x=7

       x=21:7                                                                                                    x=7-7

       x=3                                                                                                        x=0

1. (7.x-15):3 = 2

(7.x-15)=2.3

(7.x-15)=6

7x=15+6

7x=21

x=21:7

x=3

2.12.(x+37=504

x+37=504:12

x+37=42

x = 42-37

x=5

3. 85-3.(7+x)=64

3.(7+x)=85-64

3.(7+x)=21

7+x=21:3

7+x=7

x=7-7

x=0

22 tháng 12 2019

\(x^2-1=2^2.12\)

\(\Rightarrow x^2-1=4.12\)

\(\Rightarrow x^2-1=48\)

\(\Rightarrow x^2=48+1\)

\(\Rightarrow x^2=49\)

\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)

Vậy \(x\in\left\{7;-7\right\}.\)

Chúc bạn học tốt!

23 tháng 12 2019

(x^2)-1=(2^2).12

(x^2)-1=4.12

(x^2)-1=48

x^2=48+1

x^2=49

suy ra;x^2=7^2

suy ra;x=7

5 tháng 3 2020

\(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+\frac{1}{3\cdot103}+...+\frac{1}{10\cdot110}\right)x=\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)

\(\Rightarrow\left(\frac{100}{1\cdot101}+\frac{100}{2\cdot102}+\frac{100}{3\cdot103}+...+\frac{100}{100\cdot110}\right)x=10\left(\frac{10}{1\cdot11}+\frac{10}{2\cdot12}+...+\frac{10}{100\cdot110}\right)\)

\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+....+\frac{1}{10}-\frac{1}{110}\right)x=10\)\(\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)

\(\Rightarrow\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{110}\right)\right]x=10\)\(\left[\left(1+\frac{1}{2}+....+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+....+\frac{1}{100}\right)-\left(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{110}\right)\right]\)

\(\Rightarrow\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{110}\right)\right]x=10\)

\(\left[\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]\)

\(\Rightarrow x=10\)

5 tháng 3 2019

Ta có:
$(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{10.110}).x=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}$

$\Leftrightarrow \frac{1}{100}\left ( \frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110} \right )x=\frac{1}{10}\left ( \frac{1}{1}-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110} \right )$

$\Leftrightarrow \left ( \frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110} \right )x=10\left ( \frac{1}{1}-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110} \right )$

Đặt $A=\frac{1}{1}-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}$

$\Rightarrow A=\left ( 1+\frac{1}{2}+...+\frac{1}{10} \right )+\left ( \frac{1}{11}+\frac{1}{12}+...+\frac{1}{100} \right )-\left ( \frac{1}{11}+\frac{1}{12}+...+\frac{1}{100} \right )-\left (\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110} \right )$

$\Rightarrow A=\left ( 1+\frac{1}{2}+...+\frac{1}{10} \right )-\left (\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110} \right )$

$\Rightarrow A=\frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}$

Thay vào phương trình, ta có:

$\left ( \frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110} \right )x=10\left ( \frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110} \right )$

$\Leftrightarrow x=10$

5 tháng 4 2015

\(\Rightarrow\left(\frac{100}{1.101}+\frac{100}{2.102}+\frac{100}{3.103}+...+\frac{100}{10.110}\right).x=10.\left(\frac{10}{1.10}+\frac{10}{2.12}+...+\frac{10}{100.110}\right)\)

\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+...+\frac{1}{10}-\frac{1}{110}\right).x=10.\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)

\(\Rightarrow\left(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right).x=10.\left(\left(1+\frac{1}{2}+..+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)-\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}\right)\right)\)

\(\Rightarrow\left(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right).x=10.\left(\left(1+\frac{1}{2}+..+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right)\)=> x = 10

5 tháng 4 2015

Nhân 100 vào 2 vế ta được :

(100/1.101 + 100/2.102 + 100/3.103 +....+100/10.110) . x = (10/1.11 + 10/2.12 + 10/100.110 )10

=>(1+1/2+1/3+...+1/10-1/101-...-1/110)x=(1+1/2+1/3+...+1/10+1/11+...+1/100-1/11-...-1/100-1/101-...-1/110)10

=>(1+1/2+1/3+...+1/10-1/101-...-1/110)x=(1+1/2+1/3+...+1/10-1/101-...-1/110)10

=>x=10

Hay thì like nha ! hj hj

11 tháng 4 2017

Đặt :

\(A=\dfrac{1}{1.101}+\dfrac{1}{2.102}+\dfrac{1}{3.103}+..................+\dfrac{1}{10.110}\)

\(A=\dfrac{1}{100}\left(\dfrac{100}{1.101}+\dfrac{100}{2.102}+..................+\dfrac{100}{10.101}\right)\)

\(A=\dfrac{1}{100}\left(1-\dfrac{1}{101}+\dfrac{1}{2}-\dfrac{1}{102}+..............+\dfrac{1}{10}-\dfrac{1}{101}\right)\)

\(A=\dfrac{1}{100}\left[\left(1+\dfrac{1}{2}+...........+\dfrac{1}{10}\right)-\left(\dfrac{1}{101}+\dfrac{1}{102}+..........+\dfrac{1}{101}\right)\right]\)

Đặt :

\(B=\dfrac{1}{1.11}+\dfrac{1}{2.12}+...............+\dfrac{1}{100.101}\)

\(B=\dfrac{1}{10}\left(\dfrac{10}{1.11}+\dfrac{10}{2.12}+.............+\dfrac{10}{100.101}\right)\)

\(B=\dfrac{1}{10}\left(1-\dfrac{1}{11}+\dfrac{1}{2}-\dfrac{1}{12}+..............+\dfrac{1}{100}-\dfrac{1}{101}\right)\)

\(B=\dfrac{1}{10}\left[\left(1+\dfrac{1}{2}+...........+\dfrac{1}{100}\right)-\left(\dfrac{1}{11}+\dfrac{1}{12}+...............+\dfrac{1}{101}\right)\right]\)

\(=\dfrac{1}{10}\left[\left(1+\dfrac{1}{2}+.........+\dfrac{1}{10}\right)-\left(\dfrac{1}{101}+\dfrac{1}{102}+...........+\dfrac{1}{101}\right)\right]\)

\(\Rightarrow B=10A\)

\(\Rightarrow A.x=10A\)

\(x=10A:A\)

\(x=10\) (thỏa mãn)

Vậy \(x=10\) là giá trị cần tìm

~ Chúc bn học tốt ~