Tim x, y sao cho: \(\sqrt{x+y-2}=\sqrt{x}+\sqrt{y}-\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt đã cho <=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)-2\left(x+y\right)-\left(x+y+2\sqrt{xy}\right)+2\sqrt{xy}+4\left(\sqrt{x}+\sqrt{y}\right)-4=0\)
<=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)-2\left(x+y\right)+2\sqrt{xy}-\left(\sqrt{x}+\sqrt{y}-2\right)^2=0\)
<=>\(\left(\sqrt{x}+\sqrt{y}-2\right)\left(x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2\right)=0\)
<=>\(\orbr{\begin{cases}\sqrt{x}+\sqrt{y}=2\\x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2=0\end{cases}}\)
th2: nhân cả hai vế với 2 ta được
\(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+2>0\)
=>th2 vô nghiệm
do đó M=\(\sqrt{xy}\)
áp dụng bdt cô si ta có \(\sqrt{x}+\sqrt{y}>=2\sqrt{\sqrt{xy}}\)
<=>1>=\(\sqrt{\sqrt{xy}}\)(do \(\sqrt{x}+\sqrt{y}=2\))
<=>\(\sqrt{xy}< =1\)
<=>M<=1
a)\(\left(2\sqrt{x}-3\right)\left(2+\sqrt{x}\right)+6=0\)
\(\Leftrightarrow4\sqrt{x}+2x-6-3\sqrt{x}+6=0\)
\(\Leftrightarrow2x-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=0\\2\sqrt{x}-1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{4}\end{array}\right.\)
Lời giải:
ĐK: \(x,y\geq 0; x+y\geq 2\)
Bình phương 2 vế thu được:
\(x+y-2=x+y+2+2\sqrt{xy}-2\sqrt{2x}-2\sqrt{2y}\)
\(\Leftrightarrow -2=2+2\sqrt{xy}-2\sqrt{2x}-2\sqrt{2y}\)
\(\Leftrightarrow 4+2\sqrt{xy}=2\sqrt{2x}+2\sqrt{2y}\)
\(\Leftrightarrow \sqrt{2}(\sqrt{x}+\sqrt{y})-2-\sqrt{xy}=0\)
\(\Leftrightarrow \sqrt{x}(\sqrt{2}-\sqrt{y})+\sqrt{2}(\sqrt{y}-\sqrt{2})=0\)
\(\Leftrightarrow (\sqrt{2}-\sqrt{y})(\sqrt{x}-\sqrt{2})=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{2}-\sqrt{y}=0\rightarrow y=2\\ \sqrt{x}-\sqrt{2}=0\rightarrow x=2\end{matrix}\right.\)
Vậy \((x,y)=(2,y)\) với $y\geq 0$ bất kỳ hoặc \((x,y)=(x,2)\) với $x\geq 0$ bất kỳ.
\(y'=\dfrac{\left(x+\sqrt{x^2+1}\right)'}{2\sqrt{x+\sqrt{x^2+1}}}=\dfrac{1+\dfrac{x}{\sqrt{x^2+1}}}{2\sqrt{x+\sqrt{x^2+1}}}=\dfrac{x+\sqrt{x^2+1}}{2\sqrt{x^2+1}.\sqrt{x+\sqrt{x^2+1}}}\)
\(=\dfrac{\sqrt{x+\sqrt{x^2+1}}}{2\sqrt{x^2+1}}\)