Cho a+b+c=3, chứng minh rằng 1/a^2+1/b^2+1/c^2>=a^2+b^2+c^2(a,b,c>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)
\(\Leftrightarrow ab+a+ab+b=ab+a+b+1\Leftrightarrow ab=1\left(dpcm\right)\)
Nguyen Sy Hoc: mình nghĩ đề đâu sai đâu nhỉ?
Có:
\(\frac{a}{1+b^2}=a.\left(1-\frac{b^2}{1+b^2}\right)\ge a\left(1-\frac{b^2}{2b}\right)=a-\frac{ab}{2}\)
Tương tự \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\); \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng theo vế 3 BĐT trên ta thu được:
\(VT\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}\ge\left(a+b+c\right)-\frac{\left(a+b+c\right)^2}{6}=\frac{3}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c = 1
Bài 6 . Áp dụng BĐT Cauchy , ta có :
a2 + b2 ≥ 2ab ( a > 0 ; b > 0)
⇔ ( a + b)2 ≥ 4ab
⇔ \(\dfrac{\left(a+b\right)^2}{4}\)≥ ab
⇔ \(\dfrac{a+b}{4}\) ≥ \(\dfrac{ab}{a+b}\) ( 1 )
CMTT , ta cũng được : \(\dfrac{b+c}{4}\) ≥ \(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ac}{a+c}\)( 3)
Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :
\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
⇔ \(\dfrac{a+b+c}{2}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
Bài 4.
Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :
\(1+\dfrac{a}{b}\) ≥ \(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)
\(1+\dfrac{b}{c}\) ≥ \(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)
\(1+\dfrac{c}{a}\) ≥ \(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)
Nhân từng vế của ( 1 ; 2 ; 3) , ta được :
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\) ≥ \(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)
Lời giải:
Áp dụng BĐT Cô-si:
$a+b+c\geq 3\sqrt[3]{abc}=3(1)$
Tiếp tục áp dụng BĐT Cô-si:
$a^3+a\geq 2a^2$
$b^3+b\geq 2b^2$
$c^3+c\geq 2c^2$
$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)$
Lại có:
$a^2+1\geq 2a$
$b^2+1\geq 2b$
$c^2+1\geq 2c$
$\Rightarrow a^2+b^2+c^2\geq 2(a+b+c)-3=(a+b+c)+(a+b+c)-3$
$\geq a+b+c+3-3=a+b+c(2)$
$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)\geq a^2+b^2+c^2(3)$
Từ $(1); (2); (3)$ ta có đpcm.