cho a,b,c > 0 thỏa mãn a+b+b<=6 cm 1/a+1/b+1/c >= 3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0
Đặt a=3x-2; b=-2x-3
Pt sẽ trở thành:
a^5+b^5-(a+b)^5=0
=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0
=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0
=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0
=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2+2ab)=0
=>-5ab(a+b)(a^2+b^2+ab)=0
=>ab(a+b)=0
=>(3x-2)(-2x-3)(5-x)=0
=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)
Lời giải:
Áp dụng BĐT Cô-si:
$a+b+c\geq 3\sqrt[3]{abc}=3(1)$
Tiếp tục áp dụng BĐT Cô-si:
$a^3+a\geq 2a^2$
$b^3+b\geq 2b^2$
$c^3+c\geq 2c^2$
$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)$
Lại có:
$a^2+1\geq 2a$
$b^2+1\geq 2b$
$c^2+1\geq 2c$
$\Rightarrow a^2+b^2+c^2\geq 2(a+b+c)-3=(a+b+c)+(a+b+c)-3$
$\geq a+b+c+3-3=a+b+c(2)$
$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)\geq a^2+b^2+c^2(3)$
Từ $(1); (2); (3)$ ta có đpcm.
\(3=a+b+c\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)
BĐT tương đương:
\(3\left(ab+bc+ca\right)\ge abc\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+6\right]\)
\(\Leftrightarrow3\left(ab+bc+ca\right)\ge abc\left[15-2\left(ab+bc+ca\right)\right]\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(2abc+3\right)\ge15abc\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\left(2abc+3\right)^2\ge225\left(abc\right)^2\)
Do \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc\)
Nên ta chỉ cần chứng minh:
\(\left(2abc+3\right)^2\ge25abc\)
\(\Leftrightarrow\left(1-abc\right)\left(9-4abc\right)\ge0\) (luôn đúng với \(0< abc\le1\))
Dấu "=" xảy ra khi \(a=b=c=1\)
Để chứng minh rằng a^2 + b^2 + c^2 < 2 với điều kiện a + b + c = 0 và -1 < a <= b <= c < 1, chúng ta có thể sử dụng phương pháp giả định trái ngược (proof by contradiction).
Giả sử rằng a^2 + b^2 + c^2 >= 2, sau đó chúng ta sẽ chứng minh rằng điều kiện a + b + c = 0 không thể thỏa mãn.
Với a + b + c = 0, chúng ta có thể viết lại bằng cách sử dụng c = -(a + b):
a^2 + b^2 + (-a-b)^2 >= 2
Mở ngoặc và rút gọn:
a^2 + b^2 + a^2 + 2ab + b^2 >= 2
3a^2 + 2ab + 2b^2 >= 2
Chúng ta sẽ chứng minh rằng bất phương trình trên không thể đúng với điều kiện -1 < a <= b <= c < 1.
Với -1 < a <= b <= c < 1, ta có:
-1 < a <= b <= -a-b < 1
Thêm cả hai vế của bất phương trình này:
-1 < a+b <= 0 < 1
Điều này cho thấy a + b không thể bằng 1 hoặc -1.
Tiếp theo, chúng ta chứng minh rằng bất phương trình 3a^2 + 2ab + 2b^2 >= 2 không thể đúng với a + b không bằng 1 hoặc -1.
Ta có:
3a^2 + 2ab + 2b^2 >= 2
Với a + b không bằng 1 hoặc -1, ta có:
3a^2 + 2ab + 2b^2 > 3a^2 - a^2 + 2ab + b^2
= 2a^2 + 2ab + b^2
= (a + b)^2 + a^2
Vì (a + b)^2 >= 0 và a^2 >= 0, ta có:
(a + b)^2 + a^2 >= 0 + 0 = 0
Điều này cho thấy rằng bất phương trình không thể đúng.
Vì vậy, giả định ban đầu là sai và chúng ta kết luận rằng a^2 + b^2 + c^2 < 2 với điều kiện a + b + c = 0 và -1 < a <= b <= c < 1.
Sửa đề: \(a+b+c\le6\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{6}=\frac{3}{2}\)
đpcm